Learning thermodynamically constrained equations of state with
uncertainty
- URL: http://arxiv.org/abs/2306.17004v2
- Date: Fri, 23 Feb 2024 06:32:50 GMT
- Title: Learning thermodynamically constrained equations of state with
uncertainty
- Authors: Himanshu Sharma, Jim A. Gaffney, Dimitrios Tsapetis, Michael D.
Shields
- Abstract summary: This work presents a data-driven machine learning approach to constructing equation of state (EOS) models.
We propose a novel framework based on physics-informed Gaussian process regression (GPR) that automatically captures total uncertainty in the EOS.
We apply the proposed model to learn the EOS for the diamond solid state of carbon, using both density functional theory data and experimental shock Hugoniot data.
- Score: 6.739642016124097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulations of high energy-density experiments require equation of
state (EOS) models that relate a material's thermodynamic state variables --
specifically pressure, volume/density, energy, and temperature. EOS models are
typically constructed using a semi-empirical parametric methodology, which
assumes a physics-informed functional form with many tunable parameters
calibrated using experimental/simulation data. Since there are inherent
uncertainties in the calibration data (parametric uncertainty) and the assumed
functional EOS form (model uncertainty), it is essential to perform uncertainty
quantification (UQ) to improve confidence in the EOS predictions. Model
uncertainty is challenging for UQ studies since it requires exploring the space
of all possible physically consistent functional forms. Thus, it is often
neglected in favor of parametric uncertainty, which is easier to quantify
without violating thermodynamic laws. This work presents a data-driven machine
learning approach to constructing EOS models that naturally captures model
uncertainty while satisfying the necessary thermodynamic consistency and
stability constraints. We propose a novel framework based on physics-informed
Gaussian process regression (GPR) that automatically captures total uncertainty
in the EOS and can be jointly trained on both simulation and experimental data
sources. A GPR model for the shock Hugoniot is derived and its uncertainties
are quantified using the proposed framework. We apply the proposed model to
learn the EOS for the diamond solid state of carbon, using both density
functional theory data and experimental shock Hugoniot data to train the model
and show that the prediction uncertainty reduces by considering the
thermodynamic constraints.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology [1.6874375111244329]
This study investigates the decomposition of total uncertainty in the estimation of states and parameters of a differential system simulated with MC X-TFC.
MC X-TFC is applied to a six-compartment stiff ODE system, the CVSim-6 model, developed in the context of human physiology.
arXiv Detail & Related papers (2024-08-13T21:10:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Bayesian Calibration of imperfect computer models using Physics-informed
priors [0.0]
We introduce a computational efficient data-driven framework suitable for quantifying the uncertainty in physical parameters of computer models.
We extend this into a fully Bayesian framework which allows quantifying the uncertainty of physical parameters and model predictions.
This work is motivated by the need for interpretable parameters for the hemodynamics of the heart for personal treatment of hypertension.
arXiv Detail & Related papers (2022-01-17T15:16:26Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - AdjointNet: Constraining machine learning models with physics-based
codes [0.17205106391379021]
This paper proposes a physics constrained machine learning framework, AdjointNet, allowing domain scientists to embed their physics code in neural network training.
We show that the proposed AdjointNet framework can be used for parameter estimation (and uncertainty quantification by extension) and experimental design using active learning.
arXiv Detail & Related papers (2021-09-08T22:43:44Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Uncertainty estimation for molecular dynamics and sampling [0.0]
Machine learning models have emerged as a very effective strategy to sidestep time-consuming electronic-structure calculations.
It is crucial to obtain an estimate of the error that derives from the finite number of reference structures included during the training of the model.
We present examples covering different types of structural and thermodynamic properties, and systems as diverse as water and liquid gallium.
arXiv Detail & Related papers (2020-11-10T00:07:50Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
We present a novel learning framework that consistently embeds underlying physics.
We propose a novel objective based on reverse Kullback-Leibler divergence that fully incorporates the available physics in the form of the atomistic force field.
We demonstrate the algorithmic advances in terms of predictive ability and the physical meaning of the revealed CVs for a bimodal potential energy function and the alanine dipeptide.
arXiv Detail & Related papers (2020-02-24T10:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.