論文の概要: Greedy Gradient-free Adaptive Variational Quantum Algorithms on a Noisy Intermediate Scale Quantum Computer
- arxiv url: http://arxiv.org/abs/2306.17159v7
- Date: Thu, 23 Jan 2025 17:50:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:55.725165
- Title: Greedy Gradient-free Adaptive Variational Quantum Algorithms on a Noisy Intermediate Scale Quantum Computer
- Title(参考訳): 雑音の中規模量子コンピュータにおけるグレディグラディエントフリー適応変分量子アルゴリズム
- Authors: César Feniou, Muhammad Hassan, Baptiste Claudon, Axel Courtat, Olivier Adjoua, Yvon Maday, Jean-Philip Piquemal,
- Abstract要約: ハイブリッド量子古典適応型VQE(Vari Quantum Eigensolvers)は、多体量子システムにおいて古典計算を上回る性能を持つ。
本稿では,Greedy Gradient-free Adaptive VQE (GGA-VQE) と呼ばれる解析的・勾配なし最適化を用いた適応アルゴリズムを提案する。
GGA-VQEを25量子ビットの量子回路上で実行し、良好な基底状態近似を求める。
- 参考スコア(独自算出の注目度): 0.6020414684573572
- License:
- Abstract: Hybrid quantum-classical adaptive Variational Quantum Eigensolvers (VQE) hold the potential to outperform classical computing for simulating many-body quantum systems. However, practical implementations on current quantum processing units (QPUs) are challenging due to the noisy evaluation of a polynomially scaling number of observables, undertaken for operator selection and high-dimensional cost function optimization. We introduce an adaptive algorithm using analytic, gradient-free optimization, called Greedy Gradient-free Adaptive VQE (GGA-VQE). In addition to demonstrating the algorithm's improved resilience to statistical sampling noise in the computation of simple molecular ground states, we execute GGA-VQE on a 25-qubit error-mitigated QPU by computing the ground state of a 25-body Ising model. Although hardware noise on the QPU produces inaccurate energies, our implementation outputs a parameterized quantum circuit yielding a favorable ground-state approximation. We demonstrate this by retrieving the parameterized operators calculated on the QPU and evaluating the resulting ansatz wave-function via noiseless emulation (i.e., hybrid observable measurement).
- Abstract(参考訳): ハイブリッド量子古典適応型変分量子固有解器(VQE)は、多体量子系をシミュレートするための古典的計算より優れている可能性を持っている。
しかし,現状の量子処理ユニット(QPU)の実用化は,演算子選択と高次元コスト関数最適化のための多項式スケーリング数のノイズ評価により困難である。
本稿では,Greedy Gradient-free Adaptive VQE (GGA-VQE) と呼ばれる解析的・勾配なし最適化を用いた適応アルゴリズムを提案する。
単純な分子基底状態の計算における統計的サンプリングノイズに対するアルゴリズムのレジリエンスの向上に加えて、25ビットのIsingモデルの基底状態を計算することにより、25ビットの誤差緩和QPU上でGGA-VQEを実行する。
QPUのハードウェアノイズは不正確なエネルギーを生成するが、我々の実装はパラメータ化された量子回路を出力し、良好な基底状態近似を生成する。
本研究では、QPU上で計算されたパラメータ化演算子を検索し、ノイズレスエミュレーション(ハイブリッド可観測測定)によって得られるアンザッツ波動関数を評価することでこれを実証する。
関連論文リスト
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
本稿では、対称性と対応する保存電荷をVQDフレームワークに組み込むために設計された電荷保存型VQD(CPVQD)アルゴリズムを紹介する。
その結果、高エネルギー物理学、核物理学、量子化学への応用が示された。
論文 参考訳(メタデータ) (2024-10-18T10:30:14Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
本稿では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
提案手法は,従来の計算オーバーヘッドを低減し,CNOTおよびTゲートの数を平均で28%,57%削減する。
論文 参考訳(メタデータ) (2024-06-17T14:10:10Z) - Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
量子ビットレジスタにおける空間と時間の両方を符号化する変分量子アルゴリズム(VQA)を提案する。
時空符号化により、1つの基底状態計算から全時間進化を得ることができる。
論文 参考訳(メタデータ) (2024-03-25T14:06:18Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
VQCを用いた量子チップ上の関数の適合を支援するために,RTQEM(Real Time Quantum Error Mitigation)アルゴリズムを定義する。
我々のRTQEMルーチンは、損失関数の破損を減らすことにより、VQCのトレーニング性を向上させることができる。
論文 参考訳(メタデータ) (2023-11-09T19:00:01Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
本研究では、堅牢性多変数混合整数プログラム(MIP)の解法を含むReLUネットワークの検証について検討する。
この問題を軽減するために、ニューラルネットワーク検証にQCを用い、証明可能な証明書を計算するためのハイブリッド量子プロシージャを導入することを提案する。
シミュレーション環境では,我々の証明は健全であり,問題の近似に必要な最小量子ビット数に制限を与える。
論文 参考訳(メタデータ) (2022-05-02T13:23:56Z) - Improved variational quantum eigensolver via quasi-dynamical evolution [0.0]
変分量子固有解法 (VQE) は、現在および短期の量子デバイス向けに設計されたハイブリッド量子古典アルゴリズムである。
VQEには、量子優位性に対する好ましいスケーリングを禁じる問題がある。
本稿では,VQEを補う量子アニール法を提案する。
改良されたVQEは不毛の台地を回避し、局所的なミニマを放出し、低深度回路で動作する。
論文 参考訳(メタデータ) (2022-02-21T11:21:44Z) - The Variational Quantum Eigensolver: a review of methods and best
practices [3.628860803653535]
変分量子固有解法(VQE)は変動原理を用いてハミルトンの基底状態エネルギーを計算する。
本総説は,アルゴリズムの様々な部分における進捗状況について概説することを目的としている。
論文 参考訳(メタデータ) (2021-11-09T14:40:18Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
様々な種類の誤差が変分量子固有解法(VQE)に与える影響について検討する。
ハイブリッド古典量子最適化の最適方法は、中間エネルギー評価においていくつかのノイズを許容することである。
論文 参考訳(メタデータ) (2021-11-09T06:24:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。