Tailoring quantum error correction to spin qubits
- URL: http://arxiv.org/abs/2306.17786v2
- Date: Wed, 13 Mar 2024 16:25:40 GMT
- Title: Tailoring quantum error correction to spin qubits
- Authors: Bence Het\'enyi and James R. Wootton
- Abstract summary: State-of-the-art error correction codes require only nearest-neighbour connectivity.
Spin-qubit layout required for each of these error correction codes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin qubits in semiconductor structures bring the promise of large-scale 2D
integration, with the possibility to incorporate the control electronics on the
same chip. In order to perform error correction on this platform, the
characteristic features of spin qubits need to be accounted for. E.g., qubit
readout involves an additional qubit which necessitates careful reconsideration
of the qubit layout. The noise affecting spin qubits has further peculiarities
such as the strong bias towards dephasing. In this work we consider
state-of-the-art error correction codes that require only nearest-neighbour
connectivity and are amenable to fast decoding via minimum-weight perfect
matching. Compared to the surface code, the XZZX code, the reduced-connectivity
surface code, the XYZ$^2$ matching code, and the Floquet code all bring
different advantages in terms of error threshold, connectivity, or logical
qubit encoding. We present the spin-qubit layout required for each of these
error correction codes, accounting for reference qubits required for spin
readout. The performance of these codes is studied under circuit-level noise
accounting for distinct error rates for gates, readout and qubit decoherence
during idling stages.
Related papers
- Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla [0.6802401545890963]
Gottesman-Kitaev-Preskill (GKP) code is proposed to correct small displacement error in phase space.
If noise in phase space is biased, square-lattice GKP code can be ancillaryd with XZZX surface code or repetition code.
We study the performance of GKP repetition codes with physical ancillary GKP qubits in correcting biased noise.
arXiv Detail & Related papers (2023-08-03T06:14:43Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - Correcting non-independent and non-identically distributed errors with
surface codes [0.8039067099377079]
We develop and investigate the properties of topological surface codes adapted to a known noise structure by Clifford conjugations.
We show that the surface code locally tailored to non-uniform single-qubit noise in conjunction with a scalable matching decoder yields an increase in error thresholds and exponential suppression of sub-threshold failure rates.
arXiv Detail & Related papers (2022-08-03T16:21:44Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Phase flip code with semiconductor spin qubits [0.0]
We show that a quantum error correction code can be implemented using a four-qubit array in germanium.
We execute a two-qubit phase flip code and find that we can preserve the state of the data qubit by applying a refocusing pulse to the ancilla qubit.
arXiv Detail & Related papers (2022-02-23T14:10:13Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.