Systematic Computation of Braid Generator Matrix in Topological Quantum
Computing
- URL: http://arxiv.org/abs/2307.01892v1
- Date: Tue, 4 Jul 2023 19:33:17 GMT
- Title: Systematic Computation of Braid Generator Matrix in Topological Quantum
Computing
- Authors: Abdellah Tounsi, Nacer Eddine Belaloui, Mohamed Messaoud Louamri,
Amani Mimoun, Achour Benslama, Mohamed Taha Rouabah
- Abstract summary: We present a systematic numerical method to compute the elementary braiding operations for topological quantum computation (TQC)
Braiding non-Abelian anyons is a crucial technique in TQC, offering a topologically protected implementation of quantum gates.
We provide a proof of concept by successfully reproducing the CNOT gate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a systematic numerical method to compute the elementary braiding
operations for topological quantum computation (TQC). Braiding non-Abelian
anyons is a crucial technique in TQC, offering a topologically protected
implementation of quantum gates. However, obtaining matrix representations for
braid generators can be challenging, especially for systems with numerous
anyons or complex fusion patterns. Our proposed method addresses this
challenge, allowing for the inclusion of an arbitrary number of anyons per
qubit or qudit. This approach serves as a fundamental component in a general
topological quantum circuit simulator, facilitating the exploration and
analysis of intricate quantum circuits within the TQC framework. We have
implemented and tested the method using algebraic conditions. Furthermore, we
provide a proof of concept by successfully reproducing the CNOT gate.
Related papers
- Provable Quantum Algorithm Advantage for Gaussian Process Quadrature [8.271361104403802]
The aim of this paper is to develop novel quantum algorithms for Gaussian process quadrature methods.
We propose a quantum low-rank Gaussian process quadrature method based on a Hilbert space approximation of the Gaussian process kernel.
We provide a theoretical complexity analysis that shows a quantum computer advantage over classical quadrature methods.
arXiv Detail & Related papers (2025-02-20T11:42:15Z) - Practical Quantum Circuit Implementation for Simulating Coupled Classical Oscillators [1.3140209441982318]
We present and implement a detailed quantum circuit construction for simulating one-dimensional spring-mass systems.
This circuit-based Hamiltonian simulation approach can substantially reduce computational costs and potentially enable larger-scale many-body studies on future quantum hardware.
arXiv Detail & Related papers (2025-01-10T16:53:56Z) - Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
arXiv Detail & Related papers (2024-09-15T22:44:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Utilizing Quantum Processor for the Analysis of Strongly Correlated Materials [34.63047229430798]
This study introduces a systematic approach for analyzing strongly correlated systems by adapting the conventional quantum cluster method to a quantum circuit model.
We have developed a more concise formula for calculating the cluster's Green's function, requiring only real-number computations on the quantum circuit instead of complex ones.
arXiv Detail & Related papers (2024-04-03T06:53:48Z) - Simulating Quantum Circuits by Model Counting [0.0]
We show for the first time that a strong simulation of universal quantum circuits can be efficiently tackled through weighted model counting.
Our work paves the way to apply the existing array of powerful classical reasoning tools to realize efficient quantum circuit compilation.
arXiv Detail & Related papers (2024-03-11T22:40:15Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Avoiding barren plateaus via Gaussian Mixture Model [6.0599055267355695]
Variational quantum algorithms are one of the most representative algorithms in quantum computing.
They face challenges when dealing with large numbers of qubits, deep circuit layers, or global cost functions, making them often untrainable.
arXiv Detail & Related papers (2024-02-21T03:25:26Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging [0.0]
Entanglement forging based variational algorithms leverage the bi- partition of quantum systems.
We propose a new method for entanglement forging employing generative neural networks to identify the most pertinent bitstrings.
We show that the proposed algorithm achieves comparable or superior performance compared to the existing standard implementation of entanglement forging.
arXiv Detail & Related papers (2023-07-05T20:06:17Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation [0.0]
A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts.
It would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals.
In this article, a method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit.
arXiv Detail & Related papers (2021-05-28T06:37:12Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - Compiling single-qubit braiding gate for Fibonacci anyons topological
quantum computation [0.0]
Topological quantum computation is an implementation of a quantum computer in a way that radically reduces decoherence.
Topological qubits are encoded in the topological evolution of two-dimensional quasi-particles called anyons.
arXiv Detail & Related papers (2020-08-08T15:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.