論文の概要: Panel Data Nowcasting: The Case of Price-Earnings Ratios
- arxiv url: http://arxiv.org/abs/2307.02673v1
- Date: Wed, 5 Jul 2023 22:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 15:42:27.129090
- Title: Panel Data Nowcasting: The Case of Price-Earnings Ratios
- Title(参考訳): パネルデータ更新:価格上昇率を例に
- Authors: Andrii Babii and Ryan T. Ball and Eric Ghysels and Jonas Striaukas
- Abstract要約: 本論文は、異なる周波数でサンプリングされたシリーズからなるパネルデータを用いて、構造化された機械学習レグレッションを用いて、ストリームキャストを行う。
大企業の企業業績予測の問題から、スパースグループのLASSOレギュラー化に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper uses structured machine learning regressions for nowcasting with
panel data consisting of series sampled at different frequencies. Motivated by
the problem of predicting corporate earnings for a large cross-section of firms
with macroeconomic, financial, and news time series sampled at different
frequencies, we focus on the sparse-group LASSO regularization which can take
advantage of the mixed frequency time series panel data structures. Our
empirical results show the superior performance of our machine learning panel
data regression models over analysts' predictions, forecast combinations,
firm-specific time series regression models, and standard machine learning
methods.
- Abstract(参考訳): この論文は、異なる周波数でサンプリングされた時系列からなるパネルデータによる nowcasting のために構造化機械学習回帰を用いる。
異なる周波数でサンプリングされたマクロ経済・金融・ニュース時系列の大規模部門における企業利益予測の問題に動機づけられ,混合周波数時系列パネルデータ構造を活用できるスパースグループlasso正則化に焦点をあてた。
実験結果から,機械学習パネルデータ回帰モデルの性能は,アナリストの予測,予測の組み合わせ,企業固有の時系列回帰モデル,標準機械学習手法よりも優れていることが示された。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - EAMDrift: An interpretable self retrain model for time series [0.0]
EAMDrift(EAMDrift)は、複数の個人予測器から予測を合成し、性能指標に従って予測を重み付けする新しい手法である。
EAMDriftはデータのアウト・オブ・ディストリビューションパターンに自動的に適応し、各瞬間に使用する最も適切なモデルを特定するように設計されている。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
論文 参考訳(メタデータ) (2023-05-31T13:25:26Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
自動回帰(AR)や季節ARのような単純なデータ生成プロセス(DGP)からカオスロジスティックマップ、自己興奮型閾値自動回帰、マッキーグラス方程式といった複雑なDGPまで、時系列をシミュレートする。
データセットの長さと系列数は、さまざまなシナリオで変化します。
我々はこれらのデータセットに対して,Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) Model, Light Gradient Boosting Models (LGBM)などの大域的予測モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2020-12-23T04:45:52Z) - Machine Learning Panel Data Regressions with Heavy-tailed Dependent
Data: Theory and Application [0.0]
本稿では、重み付き依存パネルデータに対して、異なる周波数でサンプリング可能な構造化機械学習レグレッションを提案する。
我々は, 疎水層群 LASSO パネルデータ推定装置において, 財務・経済データに脂肪尾が存在することを認識したオラクルの不等式を求める。
論文 参考訳(メタデータ) (2020-08-08T21:12:33Z) - Machine Learning Time Series Regressions with an Application to
Nowcasting [0.0]
本稿では、異なる周波数でサンプリング可能な高次元時系列データに対して、構造化された機械学習レグレッションを提案する。
スパース群LASSO推定器は、このような時系列データ構造を活用でき、非構造LASSOより優れる。
論文 参考訳(メタデータ) (2020-05-28T14:42:58Z) - Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case [2.997238772148965]
時系列データは、多くの科学と工学の分野で広く使われている。
本稿では,トランスフォーマーに基づく機械学習モデルを用いた時系列予測の新しい手法を提案する。
提案手法により得られた予測結果は,最先端技術と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-01-23T00:22:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。