論文の概要: A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics
- arxiv url: http://arxiv.org/abs/2307.03195v2
- Date: Mon, 6 May 2024 03:18:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 01:16:13.264302
- Title: A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics
- Title(参考訳): タレント分析のための人工知能技術に関する総合的調査
- Authors: Chuan Qin, Le Zhang, Yihang Cheng, Rui Zha, Dazhong Shen, Qi Zhang, Xi Chen, Ying Sun, Chen Zhu, Hengshu Zhu, Hui Xiong,
- Abstract要約: タレント分析は人的資源管理に応用されたデータ科学において有望な分野として現れてきた。
ビッグデータと人工知能技術の最近の発展は、人的資源管理に革命をもたらした。
- 参考スコア(独自算出の注目度): 46.025337523478825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's competitive and fast-evolving business environment, it is a critical time for organizations to rethink how to make talent-related decisions in a quantitative manner. Indeed, the recent development of Big Data and Artificial Intelligence (AI) techniques have revolutionized human resource management. The availability of large-scale talent and management-related data provides unparalleled opportunities for business leaders to comprehend organizational behaviors and gain tangible knowledge from a data science perspective, which in turn delivers intelligence for real-time decision-making and effective talent management at work for their organizations. In the last decade, talent analytics has emerged as a promising field in applied data science for human resource management, garnering significant attention from AI communities and inspiring numerous research efforts. To this end, we present an up-to-date and comprehensive survey on AI technologies used for talent analytics in the field of human resource management. Specifically, we first provide the background knowledge of talent analytics and categorize various pertinent data. Subsequently, we offer a comprehensive taxonomy of relevant research efforts, categorized based on three distinct application-driven scenarios: talent management, organization management, and labor market analysis. In conclusion, we summarize the open challenges and potential prospects for future research directions in the domain of AI-driven talent analytics.
- Abstract(参考訳): 今日の競争力があり、急速に発展するビジネス環境では、組織は、定量的な方法でタレント関連の意思決定をする方法を再考する重要な時期です。
実際、最近のビッグデータと人工知能(AI)技術の発展は、人的資源管理に革命をもたらした。
大規模タレントとマネジメント関連のデータの提供により、ビジネスリーダは組織の振る舞いを理解し、データサイエンスの観点から具体的な知識を得るという、例外のない機会が得られます。
過去10年間で、人材分析は人間の資源管理に応用データ科学の有望な分野として現れ、AIコミュニティから大きな注目を集め、多くの研究努力を刺激している。
この目的のために,人的資源管理の分野で人材分析に使用されるAI技術について,最新の総合的な調査を行う。
具体的には、まず、人材分析の背景知識を提供し、関連するさまざまなデータを分類する。
その後、私たちは、人材管理、組織管理、労働市場分析という3つの異なるアプリケーション駆動シナリオに基づいて分類された、関連する研究活動の包括的分類を提供する。
結論として、AIによる人材分析の分野における今後の研究方向性に関するオープンな課題と可能性についてまとめる。
関連論文リスト
- The Transformative Impact of AI and Deep Learning in Business: A Literature Review [0.0]
本稿では,ビジネスのさまざまな機能領域におけるAIと深層学習の根本的役割を概観する。
医療分野、小売業と製造業、農業と農業、財政における材料的応用をカバーしている。
論文 参考訳(メタデータ) (2024-10-30T20:35:03Z) - Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-previewは目覚ましい能力を示し、しばしば人間レベルまたは優れたパフォーマンスを実現した。
このモデルは、様々な分野にわたる複雑な推論と知識の統合を必要とするタスクに優れていた。
総合的な結果は、人工知能への大きな進歩を示している。
論文 参考訳(メタデータ) (2024-09-27T06:57:00Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Fairness in AI-Driven Recruitment: Challenges, Metrics, Methods, and Future Directions [0.0]
ビッグデータと機械学習は、従来の採用プロセスに急激な変革をもたらした。
AIベースの採用の頻度を考えると、人間の偏見がこれらのシステムによって決定される可能性があるという懸念が高まっている。
本稿では、AIによる採用におけるバイアスの種類を議論することで、この新興分野の包括的概要を提供する。
論文 参考訳(メタデータ) (2024-05-30T05:25:14Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Towards AI-Empowered Crowdsourcing [27.0404686687184]
本稿では,AIを活用したクラウドソーシングをタスク委譲,労働者のモチベーション,品質管理の3分野に分けた分類法を提案する。
限界と洞察を議論し、これらの領域で研究を行う上での課題を整理し、将来有望な研究方向性を明らかにする。
論文 参考訳(メタデータ) (2022-12-28T05:06:55Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
本研究の目的は、人材管理問題に対処するAI指向のアーティファクトを開発するための新しい要件を特定することである。
構造化機械学習技術を用いて実験的な研究を行うための設計科学手法が採用されている。
論文 参考訳(メタデータ) (2022-07-25T10:42:50Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。