論文の概要: Fairness in AI-Driven Recruitment: Challenges, Metrics, Methods, and Future Directions
- arxiv url: http://arxiv.org/abs/2405.19699v2
- Date: Sun, 2 Jun 2024 22:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 13:40:18.764330
- Title: Fairness in AI-Driven Recruitment: Challenges, Metrics, Methods, and Future Directions
- Title(参考訳): AI駆動リクルートの公正性 - 課題、メトリクス、方法、今後の方向性
- Authors: Dena F. Mujtaba, Nihar R. Mahapatra,
- Abstract要約: ビッグデータと機械学習は、従来の採用プロセスに急激な変革をもたらした。
AIベースの採用の頻度を考えると、人間の偏見がこれらのシステムによって決定される可能性があるという懸念が高まっている。
本稿では、AIによる採用におけるバイアスの種類を議論することで、この新興分野の包括的概要を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The recruitment process is crucial to an organization's ability to position itself for success, from finding qualified and well-fitting job candidates to impacting its output and culture. Therefore, over the past century, human resources experts and industrial-organizational psychologists have established hiring practices such as attracting candidates with job ads, gauging a candidate's skills with assessments, and using interview questions to assess organizational fit. However, the advent of big data and machine learning has led to a rapid transformation in the traditional recruitment process as many organizations have moved to using artificial intelligence (AI). Given the prevalence of AI-based recruitment, there is growing concern that human biases may carry over to decisions made by these systems, which can amplify the effect through systematic application. Empirical studies have identified prevalent biases in candidate ranking software and chatbot interactions, catalyzing a growing body of research dedicated to AI fairness over the last decade. This paper provides a comprehensive overview of this emerging field by discussing the types of biases encountered in AI-driven recruitment, exploring various fairness metrics and mitigation methods, and examining tools for auditing these systems. We highlight current challenges and outline future directions for developing fair AI recruitment applications, ensuring equitable candidate treatment and enhancing organizational outcomes.
- Abstract(参考訳): 採用プロセスは、適格で適任な候補者を見つけることから、その成果と文化に影響を与えるまで、組織が成功のために自らを位置づける能力にとって不可欠である。
そのため、過去1世紀にわたり、人材専門家や産業組織心理学者は、求人広告で候補者を惹きつけること、候補者のスキルを評価で誇示すること、面接質問を用いて組織適合性を評価するなど、雇用慣行を確立してきた。
しかし、ビッグデータと機械学習の出現は、多くの組織が人工知能(AI)への移行に伴って、従来の採用プロセスの急速な変革につながった。
AIベースの採用の頻度を考えると、人間の偏見がこれらのシステムによる決定に続き、体系的な応用を通じて効果を増幅するのではないかという懸念が高まっている。
実証的な研究により、候補者のランキングソフトウェアとチャットボットの相互作用のバイアスが特定され、この10年でAIフェアネスに特化した研究が成長してきた。
本稿では、AIによる採用におけるバイアスの種類について議論し、様々な公正度指標と緩和手法を探求し、これらのシステムの監査ツールを調べることによって、この新興分野の包括的概要を提供する。
我々は、現在の課題を強調し、公正なAI採用アプリケーションの開発、適切な候補治療の確保、組織的な成果の向上に向けた今後の方向性を概説する。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics [46.025337523478825]
タレント分析は人的資源管理に応用されたデータ科学において有望な分野として現れてきた。
ビッグデータと人工知能技術の最近の発展は、人的資源管理に革命をもたらした。
論文 参考訳(メタデータ) (2023-07-03T07:53:20Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Assessing the Fairness of AI Systems: AI Practitioners' Processes,
Challenges, and Needs for Support [18.148737010217953]
私たちは、実践者のプロセス、課題、サポートの必要性を特定するために、AI実践者とのインタビューとワークショップを行っています。
パフォーマンス指標を選択し、最も関連する直接的な利害関係者や人口統計グループを特定する際に、実践者が課題に直面していることに気付きました。
私たちは、直接利害関係者との関わりの欠如、疎外されたグループよりも顧客を優先するビジネスインペラティブ、大規模にAIシステムをデプロイする動機から生じる公正な作業への影響を特定します。
論文 参考訳(メタデータ) (2021-12-10T17:14:34Z) - Towards Fairness Certification in Artificial Intelligence [31.920661197618195]
我々は,AIフェアネス認証に必要な運用手順を定義するための最初の共同作業を提案する。
我々は、オフィシャルサービスに入る前にAIシステムが満たすべき基準と、公正な判断のためにその機能を監視するのに役立つ適合性評価手順を概観する。
論文 参考訳(メタデータ) (2021-06-04T14:12:12Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z) - Bias in Data-driven AI Systems -- An Introductory Survey [37.34717604783343]
この調査は、(大きな)データと強力な機械学習(ML)アルゴリズムによって、AIの大部分は、データ駆動型AIに重点を置いている。
さもなければ、一般的な用語バイアスを使ってデータの収集や処理に関連する問題を説明します。
論文 参考訳(メタデータ) (2020-01-14T09:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。