論文の概要: VariGrad: A Novel Feature Vector Architecture for Geometric Deep
Learning on Unregistered Data
- arxiv url: http://arxiv.org/abs/2307.03553v2
- Date: Mon, 21 Aug 2023 21:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 20:37:20.966673
- Title: VariGrad: A Novel Feature Vector Architecture for Geometric Deep
Learning on Unregistered Data
- Title(参考訳): VariGrad: 未登録データの幾何学的深層学習のための新しい特徴ベクトルアーキテクチャ
- Authors: Emmanuel Hartman, Emery Pierson
- Abstract要約: 本稿では,3次元幾何データの特徴ベクトル表現を計算するために,変数勾配を利用した新しい幾何学的深層を提案する。
我々のモデルでは、パラメータ化独立な幾何データの変数表現を使用することで、与えられたサンプリングやパラメータ化に依存しないデータ上でモデルのトレーニングとテストが可能である。
- 参考スコア(独自算出の注目度): 3.4447129363520337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel geometric deep learning layer that leverages the varifold
gradient (VariGrad) to compute feature vector representations of 3D geometric
data. These feature vectors can be used in a variety of downstream learning
tasks such as classification, registration, and shape reconstruction. Our
model's use of parameterization independent varifold representations of
geometric data allows our model to be both trained and tested on data
independent of the given sampling or parameterization. We demonstrate the
efficiency, generalizability, and robustness to resampling demonstrated by the
proposed VariGrad layer.
- Abstract(参考訳): 本稿では,3次元幾何データの特徴ベクトル表現を計算するために,可変勾配(varigrad)を利用した新しい幾何学的ディープラーニング層を提案する。
これらの特徴ベクトルは、分類、登録、形状再構成といった様々な下流学習タスクで使用できる。
幾何データのパラメータ化を独立に表現することで,与えられたサンプリングやパラメータ化とは無関係に,データ上でのトレーニングとテストが可能となる。
提案したVariGrad層で示される再サンプリングの効率性,一般化性,堅牢性を示す。
関連論文リスト
- Learning Geometric Invariant Features for Classification of Vector Polygons with Graph Message-passing Neural Network [3.804240190982697]
本稿では,ポリゴンの形状分類のための幾何学的不変特徴を学習するために,新しいグラフメッセージパッシングニューラルネットワーク(PolyMP)を提案する。
提案したグラフベースPolyMPネットワークは,ポリゴンの幾何変換に不変な表現幾何学的特徴の学習を可能にする。
論文 参考訳(メタデータ) (2024-07-05T08:19:36Z) - An Intrinsic Vector Heat Network [64.55434397799728]
本稿では,3次元に埋め込まれた接ベクトル場を学習するためのニューラルネットワークアーキテクチャを提案する。
本研究では, ベクトル値の特徴データを空間的に伝播させるために, トレーニング可能なベクトル熱拡散モジュールを提案する。
また,四面体メッシュ生成の産業的有用性に対する本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-14T00:40:31Z) - Toward Mesh-Invariant 3D Generative Deep Learning with Geometric
Measures [2.167843405313757]
幾何学的データの取得を可能にする技術が開発されているため、3次元生成モデリングは加速している。
多くの生成学習アルゴリズムは、予測された形状と対象形状を比較する際に、各点間の対応を必要とする。
トレーニングフェーズにおいても,異なるパラメータ化に対処可能なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-27T19:27:15Z) - Dataset of a parameterized U-bend flow for Deep Learning Applications [5.039779583329608]
このデータセットは、U-ベンド形状における1万の流体流れと熱伝達シミュレーションを含む。
それぞれのパラメータは28の設計パラメータによって記述され、計算流体力学の助けを借りて処理される。
論文 参考訳(メタデータ) (2023-05-09T07:24:26Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Neural Vector Fields: Implicit Representation by Explicit Learning [63.337294707047036]
ニューラルベクトル場 (Neural Vector Fields, NVF) という新しい3次元表現法を提案する。
メッシュを直接操作するための明示的な学習プロセスを採用するだけでなく、符号なし距離関数(UDF)の暗黙的な表現も採用している。
提案手法は,まず表面への変位クエリを予測し,テキスト再構成として形状をモデル化する。
論文 参考訳(メタデータ) (2023-03-08T02:36:09Z) - 3D Equivariant Graph Implicit Functions [51.5559264447605]
局所的詳細のモデリングを容易にする同変層を持つグラフ暗黙関数の新しいファミリを導入する。
提案手法は,ShapeNet再構成作業において既存の回転同変暗黙関数を0.69から0.89に改善する。
論文 参考訳(メタデータ) (2022-03-31T16:51:25Z) - Learning Feature Aggregation for Deep 3D Morphable Models [57.1266963015401]
階層レベルで機能集約を向上するためのマッピング行列を学習するための注意に基づくモジュールを提案する。
実験の結果,マッピング行列のエンドツーエンドトレーニングにより,様々な3次元形状データセットの最先端結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-05-05T16:41:00Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Rotation-Invariant Local-to-Global Representation Learning for 3D Point
Cloud [42.86112554931754]
本稿では,3次元点クラウドデータに対する局所的-言語的表現学習アルゴリズムを提案する。
本モデルは,グラフ畳み込みニューラルネットワークに基づく多レベル抽象化を利用する。
提案アルゴリズムは,3次元物体の回転認識とセグメント化のベンチマークにおいて,最先端の性能を示す。
論文 参考訳(メタデータ) (2020-10-07T10:30:20Z) - LOCA: LOcal Conformal Autoencoder for standardized data coordinates [6.608924227377152]
多様体の潜在変数に等長な $mathbbRd$ の埋め込みを学ぶ方法を提案する。
我々の埋め込みは, 変形を補正する埋め込みを構成するアルゴリズムであるLOCA (Local Conformal Autoencoder) を用いて得られる。
また、単一サイトWi-FiのローカライゼーションデータにLOCAを適用し、曲面推定を3ドルで行う。
論文 参考訳(メタデータ) (2020-04-15T17:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。