論文の概要: Towards Efficient In-memory Computing Hardware for Quantized Neural
Networks: State-of-the-art, Open Challenges and Perspectives
- arxiv url: http://arxiv.org/abs/2307.03936v1
- Date: Sat, 8 Jul 2023 09:10:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 16:27:20.277330
- Title: Towards Efficient In-memory Computing Hardware for Quantized Neural
Networks: State-of-the-art, Open Challenges and Perspectives
- Title(参考訳): 量子化ニューラルネットのための効率的なインメモリコンピューティングハードウェアに向けて -最先端, オープンチャレンジと展望-
- Authors: Olga Krestinskaya, Li Zhang, Khaled Nabil Salama
- Abstract要約: エッジ上の限られたエネルギーと計算資源は、フォン・ノイマンのアーキテクチャからインメモリコンピューティング(IMC)への移行を押し進める。
量子化は、メモリフットプリント、レイテンシ、エネルギー消費を削減できる最も効率的なネットワーク圧縮手法の1つである。
本稿では、IMCベースの量子ニューラルネットワーク(QNN)の総合的なレビューを行い、ソフトウェアベースの量子化アプローチとIMCハードウェアの実装を関連付ける。
- 参考スコア(独自算出の注目度): 6.4480695157206895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The amount of data processed in the cloud, the development of
Internet-of-Things (IoT) applications, and growing data privacy concerns force
the transition from cloud-based to edge-based processing. Limited energy and
computational resources on edge push the transition from traditional von
Neumann architectures to In-memory Computing (IMC), especially for machine
learning and neural network applications. Network compression techniques are
applied to implement a neural network on limited hardware resources.
Quantization is one of the most efficient network compression techniques
allowing to reduce the memory footprint, latency, and energy consumption. This
paper provides a comprehensive review of IMC-based Quantized Neural Networks
(QNN) and links software-based quantization approaches to IMC hardware
implementation. Moreover, open challenges, QNN design requirements,
recommendations, and perspectives along with an IMC-based QNN hardware roadmap
are provided.
- Abstract(参考訳): クラウドで処理されるデータの量、IoT(Internet-of-Things)アプリケーションの開発、データプライバシの懸念の増加により、クラウドベースの処理からエッジベースの処理への移行を余儀なくされる。
エッジ上の限られたエネルギーと計算資源は、伝統的なフォン・ノイマンアーキテクチャから、特に機械学習やニューラルネットワークアプリケーションのためのインメモリコンピューティング(IMC)への移行を押し進めている。
ネットワーク圧縮技術は、限られたハードウェアリソースにニューラルネットワークを実装するために適用される。
量子化は、メモリフットプリント、レイテンシ、エネルギー消費を削減できる最も効率的なネットワーク圧縮技術の1つである。
本稿では、IMCベースの量子ニューラルネットワーク(QNN)の総合的なレビューを行い、ソフトウェアベースの量子化アプローチとIMCハードウェアの実装を関連付ける。
さらに、オープンチャレンジ、QNN設計要件、レコメンデーション、およびIMCベースのQNNハードウェアロードマップも提供される。
関連論文リスト
- Constraint Guided Model Quantization of Neural Networks [0.0]
Constraint Guided Model Quantization (CGMQ) は、計算資源の上限を使い、ニューラルネットワークのパラメータのビット幅を削減する量子化対応トレーニングアルゴリズムである。
MNISTでは、CGMQの性能が最先端の量子化対応トレーニングアルゴリズムと競合していることが示されている。
論文 参考訳(メタデータ) (2024-09-30T09:41:16Z) - From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
量子グラフニューラルネットワーク(QGNN)は、量子コンピューティングとグラフニューラルネットワーク(GNN)の新たな融合を表す。
本稿では,QGNNの現状を批判的にレビューし,様々なアーキテクチャを探求する。
我々は、高エネルギー物理学、分子化学、ファイナンス、地球科学など多種多様な分野にまたがる応用について論じ、量子的優位性の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-12T22:53:14Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAMベースのインメモリコンピューティングは、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
ReRAMベースのインメモリコンピューティングへの移行は、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
本稿では,最先端のReRAMベースディープニューラルネットワーク(DNN)多コアアクセラレータについて概説する。
論文 参考訳(メタデータ) (2021-09-08T21:11:48Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - HCM: Hardware-Aware Complexity Metric for Neural Network Architectures [6.556553154231475]
本稿では,ニューラルネットワークアーキテクチャのシステムデザイナを支援することを目的とした,ハードウェア対応の複雑性指標を提案する。
提案手法は,資源制限されたデバイス上でのニューラルネットワークモデルの設計代替案の評価にどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-04-19T16:42:51Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Multi-Objective Optimization for Size and Resilience of Spiking Neural
Networks [0.9449650062296823]
シリコンにおけるスパイキングニューラルネットワーク(SNN)モデル
スパイキングニューラルネットワークを2つのニューロモルフィックアーキテクチャの実装に適用し,そのサイズを小さくすることを目的とした。
本稿では,SNNのサイズとレジリエンスを最適化する多目的フィットネス機能を提案する。
論文 参考訳(メタデータ) (2020-02-04T16:58:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。