Detection of temporal fluctuation in superconducting qubits for quantum
error mitigation
- URL: http://arxiv.org/abs/2307.04337v1
- Date: Mon, 10 Jul 2023 04:29:06 GMT
- Title: Detection of temporal fluctuation in superconducting qubits for quantum
error mitigation
- Authors: Yuta Hirasaki, Shunsuke Daimon, Toshinari Itoko, Naoki Kanazawa, Eiji
Saitoh
- Abstract summary: We have investigated instability of a superconducting quantum computer by continuously monitoring the qubit output.
We found that qubits exhibit a step-like change in the error rates, and each step persists for several minutes.
By analyzing the correlation between the increased errors and anomalous variance of the output, we demonstrate quantum error mitigation based on post-selection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have investigated instability of a superconducting quantum computer by
continuously monitoring the qubit output. We found that qubits exhibit a
step-like change in the error rates. This change is repeatedly observed, and
each step persists for several minutes. By analyzing the correlation between
the increased errors and anomalous variance of the output, we demonstrate
quantum error mitigation based on post-selection. Numerical analysis on the
proposed method was also conducted.
Related papers
- Dynamics of measurement-induced state transitions in superconducting
qubits [0.0]
We found that the qubit error rate abruptly changes during specific time intervals.
The observed temporal instability can be attributed to qubit transitions induced by a measurement stimulus.
arXiv Detail & Related papers (2024-02-08T05:04:39Z) - Direct evidence for cosmic-ray-induced correlated errors in
superconducting qubit array [27.326956775973564]
Correlated errors can significantly impact the quantum error correction.
Superconducting qubits have been found to suffer correlated errors across multiple qubits.
arXiv Detail & Related papers (2024-02-06T18:52:57Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Mechanically Induced Correlated Errors on Superconducting Qubits with
Relaxation Times Exceeding 0.4 Milliseconds [0.0]
Superconducting qubits are one of the most advanced candidates to realize scalable and fault-tolerant quantum computing.
Here, we realize ultra-coherent superconducting transmon qubits based on niobium capacitor electrodes, with lifetimes exceeding 0.4 ms.
By employing a nearly quantum-limited readout chain based on a Josephson traveling wave amplifier, we are able to simultaneously record bit-flip errors occurring in a multiple-qubit device.
We find that a pulse tube mechanical shock causes nonequilibrium dynamics of the qubits, leading to correlated bit-flip errors as well as transitions outside of the computational state space.
arXiv Detail & Related papers (2023-05-04T06:55:41Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Error-mitigated deep-circuit quantum simulation: steady state and
relaxation rate problems [4.762232147934851]
We show that digital quantum simulation of closed quantum systems are robust against the accumulation of Trotter errors.
We propose a new error-mitigation technique based on the scaling behavior in the vicinity of the critical point of a quantum phase transition.
arXiv Detail & Related papers (2021-11-18T11:01:45Z) - Experimental Bayesian estimation of quantum state preparation,
measurement, and gate errors in multi-qubit devices [0.0]
We self-consistently estimate up to seven parameters of each qubit's state preparation, readout, and gate errors.
We demonstrate easily implemented approaches for mitigating different errors before a quantum experiment.
arXiv Detail & Related papers (2021-08-24T12:45:53Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Quantum computed moments correction to variational estimates [0.0]
We present an approach in which problem complexity is transferred to dynamic quantities computed on the quantum processor.
With system dynamics encoded in the moments the burden on the trial-state quantum circuit depth is eased.
arXiv Detail & Related papers (2020-09-28T08:39:05Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.