論文の概要: Geometric Constraints in Probabilistic Manifolds: A Bridge from
Molecular Dynamics to Structured Diffusion Processes
- arxiv url: http://arxiv.org/abs/2307.04493v1
- Date: Mon, 10 Jul 2023 11:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 13:22:25.824370
- Title: Geometric Constraints in Probabilistic Manifolds: A Bridge from
Molecular Dynamics to Structured Diffusion Processes
- Title(参考訳): 確率多様体の幾何学的制約:分子動力学から構造化拡散過程への橋渡し
- Authors: Justin Diamond, Markus Lill
- Abstract要約: ユークリッド空間における任意の幾何制約の集合に厳密に固執する分布からのサンプリングを可能にする手法を提案する。
これは、制約プロジェクション演算子をDenoising Diffusion Probabilistic Modelsのよく考えられたアーキテクチャに統合することで達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the macroscopic characteristics of biological complexes demands
precision and specificity in statistical ensemble modeling. One of the primary
challenges in this domain lies in sampling from particular subsets of the
state-space, driven either by existing structural knowledge or specific areas
of interest within the state-space. We propose a method that enables sampling
from distributions that rigorously adhere to arbitrary sets of geometric
constraints in Euclidean spaces. This is achieved by integrating a constraint
projection operator within the well-regarded architecture of Denoising
Diffusion Probabilistic Models, a framework founded in generative modeling and
probabilistic inference. The significance of this work becomes apparent, for
instance, in the context of deep learning-based drug design, where it is
imperative to maintain specific molecular profile interactions to realize the
desired therapeutic outcomes and guarantee safety.
- Abstract(参考訳): 生体複合体のマクロな特性を理解するには、統計アンサンブルモデリングの精度と特異性が必要である。
この領域の主要な課題の1つは、状態空間の特定のサブセットからサンプリングすることであり、既存の構造的知識または状態空間内の特定の関心領域によって駆動される。
ユークリッド空間における任意の幾何制約の集合に厳密に固執する分布からのサンプリングを可能にする手法を提案する。
これは、生成的モデリングと確率的推論で確立されたフレームワークであるDenoising Diffusion Probabilistic Modelsのよく認識されたアーキテクチャに制約プロジェクション演算子を統合することで達成される。
この研究の意義は、例えば深層学習に基づく薬物設計の文脈において明らかであり、特定の分子プロファイル相互作用を維持し、望ましい治療結果を実現し、安全性を保証することが不可欠である。
関連論文リスト
- Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood [13.175343048302697]
そこで我々は,そのような潜在構造がいつでも存在すると仮定することなく,その存在を推定するためのモデルフリーな手法を提案する。
アプリケーションとして,提案手法に基づくクラスタリングアルゴリズムを設計し,広範囲の潜伏構造を捕捉する手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-29T17:11:33Z) - Spatial embedding promotes a specific form of modularity with low entropy and heterogeneous spectral dynamics [0.0]
空間的に埋め込まれたリカレントニューラルネットワークは、学習よりもネットワークの構造と機能を組み合わせた組織をどのように形成するかを研究するための有望な道を提供する。
我々は,これらの制約を,速度とスパイクニューラルネットワークの両面にわたって,ニューラルウェイトと固有スペクトルのエントロピー測定によって研究することが可能であることを示す。
この作業は、ニューラルネットワークにおける制約付き学習の理解を深め、コーディングスキームやタスクを越えて、同時に構造的および機能的目的に対するソリューションをタンデムで達成する必要がある。
論文 参考訳(メタデータ) (2024-09-26T10:00:05Z) - Compositional Structures in Neural Embedding and Interaction Decompositions [101.40245125955306]
ニューラルネットワークにおけるベクトル埋め込みにおける線形代数構造間の基本的な対応について述べる。
相互作用分解」の観点から構成構造の特徴づけを導入する。
モデルの表現の中にそのような構造が存在するためには、必要かつ十分な条件を確立する。
論文 参考訳(メタデータ) (2024-07-12T02:39:50Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Bayesian Semi-structured Subspace Inference [0.0]
半構造回帰モデルは、解釈可能な構造と複雑な非構造的特徴効果の合同モデリングを可能にする。
部分空間推論を用いた半構造化回帰モデルに対するベイズ近似を提案する。
提案手法は,シミュレーションおよび実世界のデータセット間での競合予測性能を示す。
論文 参考訳(メタデータ) (2024-01-23T18:15:58Z) - Diffusion-Driven Generative Framework for Molecular Conformation
Prediction [0.66567375919026]
機械学習の急速な進歩は、この文脈における予測モデリングの精度に革命をもたらした。
本研究は,最先端な生成手法を提案する。
メソッドは原子を独立した実体とみなし、拡散の逆転を導くのに優れている。
論文 参考訳(メタデータ) (2023-12-22T11:49:39Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Measure-Theoretic Probability of Complex Co-occurrence and E-Integral [15.263586201516159]
E積分と呼ばれる自然積分のクラスの振る舞いは、共起の条件付き確率に基づいて研究される。
本稿では,基本的測度理論概念としてのE積分を出発点とする,新しい測度理論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-18T14:52:23Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
環境全体にわたる一般化は、実世界の課題への強化学習アルゴリズムの適用の成功に不可欠である。
本稿では,多環境環境における新しい観測を一般化するモデル不適合状態抽象化(MISA)を学習するための不変予測法を提案する。
論文 参考訳(メタデータ) (2020-03-12T21:03:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。