An atomic boson sampler
- URL: http://arxiv.org/abs/2307.06936v2
- Date: Mon, 8 Jul 2024 19:43:47 GMT
- Title: An atomic boson sampler
- Authors: Aaron W. Young, Shawn Geller, William J. Eckner, Nathan Schine, Scott Glancy, Emanuel Knill, Adam M. Kaufman,
- Abstract summary: A boson sampler implements a restricted model of quantum computing.
We show a new combination of tools for implementing boson sampling using ultracold atoms in a tunnel-coupled optical lattice.
Our work demonstrates the core capabilities required to directly assemble ground and excited states in simulations of various Hubbard models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A boson sampler implements a restricted model of quantum computing. It is defined by the ability to sample from the distribution resulting from the interference of identical bosons propagating according to programmable, non-interacting dynamics. Here, we demonstrate a new combination of tools for implementing boson sampling using ultracold atoms in a two-dimensional, tunnel-coupled optical lattice. These tools include fast and programmable preparation of large ensembles of nearly identical bosonic atoms ($99.5^{+0.5}_{-1.6}\;\%$ indistinguishability) by means of rearrangement with optical tweezers and high-fidelity optical cooling, propagation for variable evolution time in the lattice with low loss ($5.0(2)\;\%$, independent of evolution time), and high fidelity detection of the atom positions after their evolution (typically $99.8(1)\;\%$). With this system, we study specific instances of boson sampling involving up to $180$ atoms distributed among $\sim 1000$ sites in the lattice. Direct verification of a given boson sampling distribution is not feasible in this regime. Instead, we introduce and perform targeted tests to determine the indistinguishability of the prepared atoms, to characterize the applied family of single particle unitaries, and to observe expected bunching features due to interference for a large range of atom numbers. When extended to interacting systems, our work demonstrates the core capabilities required to directly assemble ground and excited states in simulations of various Hubbard models.
Related papers
- Hybrid Oscillator-Qubit Quantum Processors: Simulating Fermions, Bosons, and Gauge Fields [31.51988323782987]
We develop a hybrid oscillator-qubit processor framework for quantum simulation of strongly correlated fermions and bosons.
This framework gives exact decompositions of particle interactions as well as approximate methods based on the Baker-Campbell Hausdorff formulas.
While our work focusses on an implementation in superconducting hardware, our framework can also be used in trapped ion, and neutral atom hardware.
arXiv Detail & Related papers (2024-09-05T17:58:20Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Boson sampling with ultracold atoms in a programmable optical lattice [0.0]
We propose a scheme to implement a boson sampling machine with ultracold atoms in a polarization-synthesized optical lattice.
We experimentally demonstrate the basic building block of such a machine by revealing the Hong-Ou-Mandel interference of two bosonic atoms in a four-mode interferometer.
Our results show that atomic samplers have the potential to achieve quantum advantage over today's best supercomputers with $N gtrsim 40$.
arXiv Detail & Related papers (2022-08-25T17:57:31Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum Enhanced Cavity QED Interferometer with Partially Delocalized
Atoms in Lattices [0.0]
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice.
We show that for arrays of $104$ atoms, our protocol can reduce the required averaging time by a factor of $10$ compared to unentangled lattice-based interferometers.
arXiv Detail & Related papers (2021-04-09T05:58:24Z) - A tweezer clock with half-minute atomic coherence at optical frequencies
and high relative stability [0.6113111451963646]
We introduce a new, hybrid approach to tailoring optical potentials by tweezer-trapped alkaline-earth atoms.
We achieve trapping and optical clock excited-state lifetimes exceeding $ 40 $ seconds in ensembles of approximately $ 150 $ atoms.
Results pave the way towards long-lived engineered entanglement on an optical clock transition in tailored atom arrays.
arXiv Detail & Related papers (2020-04-13T17:54:22Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.