Geometric quantum gates via dark paths in Rydberg atoms
- URL: http://arxiv.org/abs/2307.07148v2
- Date: Sun, 28 Jan 2024 04:03:14 GMT
- Title: Geometric quantum gates via dark paths in Rydberg atoms
- Authors: Zhu-yao Jin and Jun Jing
- Abstract summary: We construct a universal set of nonadiabatic holonomic $N$-qubit gates using the Rydberg-Rydberg interaction between atoms under off-resonant driving.
Based on an effective four-level configuration in the Rydberg-atom system, the modified nonadiabatic holonomic geometric gates present a clear resilience to both systematic error and external noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonadiabatic holonomic quantum gates are high-speed and robust. Nevertheless,
they were found to be more fragile than the adiabatic gates when systematic
errors become dominant. Inspired by the dark-path scheme that was used to
partially relieve the systematic error in the absence of external noise, we
construct a universal set of nonadiabatic holonomic $N$-qubit gates using the
Rydberg-Rydberg interaction between atoms under off-resonant driving. Based on
an effective four-level configuration in the Rydberg-atom system, the modified
nonadiabatic holonomic geometric gates present a clear resilience to both
systematic error in the whole parametric range and external noise. In our
scheme, the conventional ultrastrong interaction between control atoms and the
target atom for the nonadiabatic holonomic quantum computation is compensated
by the detuning of the driving fields on the target atom. That idea yields a
deeper understanding about the holonomic transformation. Moreover, our scheme
is compact and scale-free with respect to $N$. It is interesting to find that
the three-qubit gate is less susceptible to errors than the double-qubit one.
Related papers
- Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Rabi-error and Blockade-error-resilient All-Geometric Rydberg Quantum
Gates [1.6163129903911513]
We improve the robustness of two-qubit Rydberg gate against Rabi control errors and blockade errors.
Our scheme provides a promising route towards systematic control error (Rabi error) as well as blockade error tolerant geometric quantum computation on neutral atom system.
arXiv Detail & Related papers (2023-02-07T06:01:59Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Multiqubit Toffoli gates and optimal geometry with Rydberg atoms [8.593850607345678]
We demonstrate a multiqubit blockade gate with atoms arranged in a three-dimensional spheroidal array.
The gate performance is greatly improved by the method of optimizing control-qubit distributions on the spherical surface.
We numerically show that a C$_6$NOT Rydberg gate can be created with a fidelity of 0.992.
arXiv Detail & Related papers (2022-03-27T13:41:42Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Systematic error tolerant multiqubit holonomic entangling gates [11.21912040660678]
We propose to realize high-fidelity holonomic $(N+1)$-qubit controlled gates using Rydberg atoms confined in optical arrays or superconducting circuits.
Our study paves a new route to build robust multiqubit gates with Rydberg atoms trapped in optical arrays or with superconducting circuits.
arXiv Detail & Related papers (2020-12-05T03:00:47Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.