L-DAWA: Layer-wise Divergence Aware Weight Aggregation in Federated
Self-Supervised Visual Representation Learning
- URL: http://arxiv.org/abs/2307.07393v1
- Date: Fri, 14 Jul 2023 15:07:30 GMT
- Title: L-DAWA: Layer-wise Divergence Aware Weight Aggregation in Federated
Self-Supervised Visual Representation Learning
- Authors: Yasar Abbas Ur Rehman, Yan Gao, Pedro Porto Buarque de Gusm\~ao, Mina
Alibeigi, Jiajun Shen, Nicholas D. Lane
- Abstract summary: Integration of self-supervised learning (SSL) and federated learning (FL) into one coherent system can potentially offer data privacy guarantees.
We propose a new aggregation strategy termed Layer-wise Divergence Aware Weight Aggregation (L-DAWA) to mitigate the influence of client bias and divergence during FL aggregation.
- Score: 14.888569402903562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ubiquity of camera-enabled devices has led to large amounts of unlabeled
image data being produced at the edge. The integration of self-supervised
learning (SSL) and federated learning (FL) into one coherent system can
potentially offer data privacy guarantees while also advancing the quality and
robustness of the learned visual representations without needing to move data
around. However, client bias and divergence during FL aggregation caused by
data heterogeneity limits the performance of learned visual representations on
downstream tasks. In this paper, we propose a new aggregation strategy termed
Layer-wise Divergence Aware Weight Aggregation (L-DAWA) to mitigate the
influence of client bias and divergence during FL aggregation. The proposed
method aggregates weights at the layer-level according to the measure of
angular divergence between the clients' model and the global model. Extensive
experiments with cross-silo and cross-device settings on CIFAR-10/100 and Tiny
ImageNet datasets demonstrate that our methods are effective and obtain new
SOTA performance on both contrastive and non-contrastive SSL approaches.
Related papers
- FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation [0.4499833362998489]
We propose FedGS, a novel FL aggregation method, to improve segmentation performance on small, under-represented targets.
FedGS demonstrates superior performance over FedAvg, particularly for small lesions, across PolypGen and LiTS datasets.
arXiv Detail & Related papers (2024-08-21T15:26:21Z) - Data-Free Federated Class Incremental Learning with Diffusion-Based Generative Memory [27.651921957220004]
We introduce a novel data-free federated class incremental learning framework with diffusion-based generative memory (DFedDGM)
We design a new balanced sampler to help train the diffusion models to alleviate the common non-IID problem in FL.
We also introduce an entropy-based sample filtering technique from an information theory perspective to enhance the quality of generative samples.
arXiv Detail & Related papers (2024-05-22T20:59:18Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - SwiMDiff: Scene-wide Matching Contrastive Learning with Diffusion
Constraint for Remote Sensing Image [21.596874679058327]
SwiMDiff is a novel self-supervised pre-training framework for remote sensing images.
It recalibrates labels to recognize data from the same scene as false negatives.
It seamlessly integrates contrastive learning (CL) with a diffusion model.
arXiv Detail & Related papers (2024-01-10T11:55:58Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - An Adaptive Plug-and-Play Network for Few-Shot Learning [12.023266104119289]
Few-shot learning requires a model to classify new samples after learning from only a few samples.
Deep networks and complex metrics tend to induce overfitting, making it difficult to further improve the performance.
We propose plug-and-play model-adaptive resizer (MAR) and adaptive similarity metric (ASM) without any other losses.
arXiv Detail & Related papers (2023-02-18T13:25:04Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
Imposing consistency through proxy tasks has been shown to enhance data-driven learning.
This paper introduces novel and effective consistency strategies for optical flow estimation.
arXiv Detail & Related papers (2022-04-14T22:58:30Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.