論文の概要: Brain Tumor Detection using Convolutional Neural Networks with Skip
Connections
- arxiv url: http://arxiv.org/abs/2307.07503v1
- Date: Fri, 14 Jul 2023 17:52:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 13:03:42.754287
- Title: Brain Tumor Detection using Convolutional Neural Networks with Skip
Connections
- Title(参考訳): スキップ接続を有する畳み込みニューラルネットワークを用いた脳腫瘍検出
- Authors: Aupam Hamran, Marzieh Vaeztourshizi, Amirhossein Esmaili, Massoud
Pedram
- Abstract要約: 我々は磁気共鳴イメージング(MRI)技術を用いて脳腫瘍を良性および悪性のタイプに分類・分類するために,畳み込みニューラルネットワーク(CNN)の異なるアーキテクチャを提案する。
ネットワークの拡張や深化,スキップ接続の追加といった,CNNアーキテクチャの最適化手法を適用し,ネットワークの精度を向上させる。
- 参考スコア(独自算出の注目度): 3.043665249713003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present different architectures of Convolutional Neural
Networks (CNN) to analyze and classify the brain tumors into benign and
malignant types using the Magnetic Resonance Imaging (MRI) technique. Different
CNN architecture optimization techniques such as widening and deepening of the
network and adding skip connections are applied to improve the accuracy of the
network. Results show that a subset of these techniques can judiciously be used
to outperform a baseline CNN model used for the same purpose.
- Abstract(参考訳): 本稿では、磁気共鳴イメージング(MRI)技術を用いて、脳腫瘍を良性および悪性のタイプに分類し分類するために、畳み込みニューラルネットワーク(CNN)の異なるアーキテクチャを提案する。
ネットワークの拡張や深化,スキップ接続の追加といった,CNNアーキテクチャの最適化手法を適用し,ネットワークの精度を向上させる。
その結果、これらの手法のサブセットは、同じ目的に使用されるベースラインCNNモデルよりも優れていることがわかった。
関連論文リスト
- Enhance the Image: Super Resolution using Artificial Intelligence in MRI [10.00462384555522]
本章では,MRIの空間分解能向上のためのディープラーニング技術の概要を紹介する。
深層学習に基づくMRI超解像の実現可能性と信頼性に関する課題と今後の展望について論じる。
論文 参考訳(メタデータ) (2024-06-19T15:19:41Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with
Graph Neural Networks [28.460737693330245]
我々は、fMRI解析のためのアンダーラインTask-aware UnderlineBrain接続アンダーラインDAGに基づくエンドツーエンドフレームワークTBDSを提案する。
TBDSの鍵となるコンポーネントは、DAG学習アプローチを採用して、生の時系列をタスク対応の脳結合性に変換する脳ネットワークジェネレータである。
2つのfMRIデータセットに関する総合的な実験は、TBDSの有効性を示す。
論文 参考訳(メタデータ) (2022-11-01T03:59:54Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Enhanced MRI Reconstruction Network using Neural Architecture Search [22.735244777008422]
残差基本ブロックを用いたMRI再構成ネットワークを提案する。
基本ブロック内の各セルに対して、差別化可能なニューラルアーキテクチャサーチ(NAS)技術を用いて、最適な操作を自動的に選択する。
この新しい異種ネットワークは2つの公開データセットで評価され、現在の最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-08-19T03:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。