論文の概要: Artificial intelligence is algorithmic mimicry: why artificial "agents"
are not (and won't be) proper agents
- arxiv url: http://arxiv.org/abs/2307.07515v1
- Date: Tue, 27 Jun 2023 19:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-23 12:27:51.573293
- Title: Artificial intelligence is algorithmic mimicry: why artificial "agents"
are not (and won't be) proper agents
- Title(参考訳): 人工知能はアルゴリズムの模倣だ:なぜ「エージェント」が適切なエージェントではない(そしてそうでない)のか
- Authors: Johannes Jaeger
- Abstract要約: 人工知能(AGI)開発の可能性について検討する
私は「緊急性」の概念に特に焦点をあてて、生活システムとアルゴリズムシステムを比較します。
真のAGIが現在のAI研究のアルゴリズムフレームワークで開発される可能性は極めて低い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What is the prospect of developing artificial general intelligence (AGI)? I
investigate this question by systematically comparing living and algorithmic
systems, with a special focus on the notion of "agency." There are three
fundamental differences to consider: (1) Living systems are autopoietic, that
is, self-manufacturing, and therefore able to set their own intrinsic goals,
while algorithms exist in a computational environment with target functions
that are both provided by an external agent. (2) Living systems are embodied in
the sense that there is no separation between their symbolic and physical
aspects, while algorithms run on computational architectures that maximally
isolate software from hardware. (3) Living systems experience a large world, in
which most problems are ill-defined (and not all definable), while algorithms
exist in a small world, in which all problems are well-defined. These three
differences imply that living and algorithmic systems have very different
capabilities and limitations. In particular, it is extremely unlikely that true
AGI (beyond mere mimicry) can be developed in the current algorithmic framework
of AI research. Consequently, discussions about the proper development and
deployment of algorithmic tools should be shaped around the dangers and
opportunities of current narrow AI, not the extremely unlikely prospect of the
emergence of true agency in artificial systems.
- Abstract(参考訳): agi(artificial general intelligence)の開発はどうなるのか?
生活システムとアルゴリズムシステムとを体系的に比較し,特に「アジェンシー」の概念に焦点をあてて考察する。
1) 生活システムは自己表現型,すなわち自己生産型であり,それゆえ自発的な目標を設定することが可能であり,一方,外部エージェントによって提供される対象関数を持つ計算環境にはアルゴリズムが存在する。
2) リビングシステムは, ハードウェアからソフトウェアを最大限に分離する計算アーキテクチャ上でアルゴリズムが動作するのに対して, シンボル的側面と物理的側面の分離がないという意味で具体化されている。
3) 生活システムには大きな世界があり、ほとんどの問題は不定義であり(すべて定義可能ではない)、アルゴリズムは小さな世界に存在し、すべての問題が明確に定義されている。
これら3つの違いは、生活システムとアルゴリズムシステムは、非常に異なる能力と限界を持っていることを意味する。
特に、AI研究の現在のアルゴリズムフレームワークにおいて、真のAGI(単なる模倣)が開発される可能性は極めて低い。
したがって、アルゴリズムツールの適切な開発と展開に関する議論は、現在の狭義のAIの危険性と機会を中心に形成されるべきであり、人工システムにおける真のエージェンシーが出現する可能性は極めて低い。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
汎用人工知能システム(GPAIS)は、これらのAIシステムを指すものとして定義されている。
これまで、人工知能の可能性は、まるで人間であるかのように知的タスクを実行するのに十分強力であり、あるいはそれを改善することさえ可能であり、いまだに願望、フィクションであり、我々の社会にとっての危険であると考えられてきた。
本研究は,GPAISの既存の定義について論じ,その特性や限界に応じて,GPAISの種類間で段階的な分化を可能にする新しい定義を提案する。
論文 参考訳(メタデータ) (2023-07-26T16:35:48Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
我々は、最初の完全自己プログラミングAIシステムを開発し、実験的に検証する。
AIベースのコンピュータコード生成をAI自体に適用することで、ニューラルネットワークのソースコードを継続的に修正し書き換えるアルゴリズムを実装します。
論文 参考訳(メタデータ) (2022-04-30T05:44:34Z) - Thinking Fast and Slow in AI: the Role of Metacognition [35.114607887343105]
最先端のAIには、(人間)インテリジェンスの概念に自然に含まれる多くの能力がない。
私たちは、人間がこれらの能力を持つことができるメカニズムをよりよく研究することで、これらの能力でAIシステムを構築する方法を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-05T06:05:38Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Hybrid Intelligence [4.508830262248694]
今後数十年間、人間と機械の間の労働分業の最も可能性の高いパラダイムはハイブリッド・インテリジェンスであると主張する。
このコンセプトは、人間の知性とAIの相補的な強みを利用することを目標とし、それぞれが個別にできることよりも優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-03T08:56:09Z) - Exploring the Nuances of Designing (with/for) Artificial Intelligence [0.0]
我々は,AIの設計において,アルゴリズムと社会の問題に同時に対処する手段として,インフラストラクチャの構築について検討する。
アルゴリズム的なソリューションも、純粋にヒューマニズム的なソリューションも、AIの狭い状態において完全に望ましくない結果をもたらすには十分ではない。
論文 参考訳(メタデータ) (2020-10-22T20:34:35Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。