Quantum coherence and the principle of microscopic reversibility
- URL: http://arxiv.org/abs/2307.08792v2
- Date: Tue, 24 Oct 2023 17:45:02 GMT
- Title: Quantum coherence and the principle of microscopic reversibility
- Authors: K. Khan, W. F. Magalhaes, Jailson S. Araujo, B. de Lima Bernardo and
Gabriel H. Aguilar
- Abstract summary: We study the implications of our findings in the framework of a qubit system interacting with a thermal reservoir.
Our results show that the influence of coherence is more decisive at low temperatures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The principle of microscopic reversibility is a fundamental element in the
formulation of fluctuation relations and the Onsager reciprocal relations. As
such, a clear description of whether and how this principle is adapted to the
quantum mechanical scenario might be essential to a better understanding of
nonequilibrium quantum processes. Here, we propose a quantum generalization of
this principle, which highlights the role played by coherence in the symmetry
relations involving the probability of observing a quantum transition and that
of the corresponding time reversed process. We study the implications of our
findings in the framework of a qubit system interacting with a thermal
reservoir, and implement an optical experiment that simulates the dynamics. Our
theoretical and experimental results show that the influence of coherence is
more decisive at low temperatures and that the maximum departure from the
classical case does not take place for maximally coherent states. Classical
predictions are recovered in the appropriate limits.
Related papers
- On the evolution of expected values in open quantum systems [44.99833362998488]
We identify three factors contributing to the evolution of expected values.
In some cases, the non-thermal contributions to the energy rate of change can be expressed as the expected value of a Hermitian operator.
arXiv Detail & Related papers (2024-02-29T06:47:28Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Connecting Commutativity and Classicality for Multi-Time Quantum
Processes [0.0]
We focus on the relationship between Kolmogorov consistency of measurement statistics and the commutativity of measurement operators.
On the other hand, commutativity of measurement operators is a structural property that holds in classical physics.
We detail their implications for memoryless multi-time quantum processes.
arXiv Detail & Related papers (2022-04-25T14:41:08Z) - Emergent quantum correlations and collective behavior in non-interacting
quantum systems subject to stochastic resetting [0.0]
We investigate the dynamics of a non-interacting spin system undergoing coherent oscillations in the presence of Rabi resetting.
We show that resetting generally induces long-range quantum and classical correlations.
In the thermodynamic limit, the spin system can feature collective behavior.
arXiv Detail & Related papers (2022-02-25T12:22:19Z) - Dynamical replica analysis of quantum annealing [0.0]
An interesting alternative approach to the dynamics of quantum spin systems was proposed about a decade ago.
It involves creating a proxy dynamics via the Suzuki-Trotter mapping of the quantum ensemble to a classical one.
In this chapter we give an introduction to this approach, focusing on the ideas and assumptions behind the derivations.
arXiv Detail & Related papers (2020-10-23T12:17:38Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Probing quantum gravity effects with quantum mechanical oscillators [0.0]
Phenomenological models aiming to join gravity and quantum mechanics often predict effects that are potentially measurable in low-energy experiments.
We propose experiments aiming to observe possible quantum gravity effects on macroscopic mechanical oscillators.
arXiv Detail & Related papers (2020-04-29T17:49:34Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.