The quantum Mpemba effects
- URL: http://arxiv.org/abs/2502.08087v1
- Date: Wed, 12 Feb 2025 03:16:04 GMT
- Title: The quantum Mpemba effects
- Authors: Filiberto Ares, Pasquale Calabrese, Sara Murciano,
- Abstract summary: The Mpemba effect, where a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics.
We provide a concise overview of the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics.
Particular attention is given to the role of quantum fluctuations, integrability, and symmetry in shaping equilibration pathways.
- Score: 0.0
- License:
- Abstract: The Mpemba effect, where a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, significant theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this review, we provide a concise overview of the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations, and explore the fundamental mechanisms that give rise to anomalous relaxation behaviors. Particular attention is given to the role of quantum fluctuations, integrability, and symmetry in shaping equilibration pathways. Finally, we outline open questions and future directions.
Related papers
- Thermodynamic limits of the Mpemba effect: A unified resource theory analysis [0.0]
Mpemba effect is a counterintuitive thermodynamic phenomenon in which a hotter system cools more rapidly than a colder one.
We investigate the role of classical and quantum correlations in driving anomalous relaxation behaviors.
arXiv Detail & Related papers (2025-01-31T19:16:30Z) - Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - Quantum and classical coarsening and their interplay with the
Kibble-Zurek mechanism [0.0]
Out-of-equilibrium dynamics of a quantum system driven across a quantum phase transition is an important problem.
We develop a universal description of such coarsening dynamics and their interplay with the Kibble-Zurek mechanism.
We highlight how such coarsening dynamics can be directly studied in today's "synthetic" quantum many-body systems.
arXiv Detail & Related papers (2024-01-26T19:00:00Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of Bose-Einstein Condensation and Quenched Formation
Dynamics [0.0]
The emergence of macroscopic coherence in a many-body quantum system is a ubiquitous phenomenon across different physical systems and scales.
Characteristic examples include symmetry-breaking in the Kibble-Zurek mechanism, coarsening and phase-ordering kinetics, and universaltemporal scaling around non-thermal fixed points.
The Chapter concludes with a brief review of the potential relevance of some of these concepts in modelling the large-scale distribution of dark matter in the universe.
arXiv Detail & Related papers (2023-04-19T10:12:52Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.