Quantum reading of quantum information
- URL: http://arxiv.org/abs/2307.08821v2
- Date: Mon, 24 Jul 2023 09:11:58 GMT
- Title: Quantum reading of quantum information
- Authors: Samad Khabbazi-Oskouei, Stefano Mancini, Milajiguli Rexiti
- Abstract summary: We use two qubit unitaries describing the system environment interaction.
The performance of the most relevant two-qubit unitaries is determined.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the notion of quantum reading to the case where the information to
be retrieved, which is encoded into a set of quantum channels, is of quantum
nature. We use two qubit unitaries describing the system environment
interaction, with the initial environment state determining the system's input
output channel and hence the encoded information. The performance of the most
relevant two-qubit unitaries is determined with two different approaches: i)
one-shot quantum capacity of the channel arising between environment and
system's output; ii) estimation of parameters characterizing the initial
quantum state of the environment. The obtained results are mostly in
(qualitative) agreement, with some distinguishing features that include the
CNOT unitary.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum simulation of entanglement dynamics in a quantum processor [0.0]
We implement a five-qubit protocol in IBM quantum processors to study entanglement dynamics.
We observe the sudden death and sudden birth of entanglement for different inital conditions.
This work takes relevance showing the usefulness of current noisy quantum devices to test fundamental concepts in quantum information.
arXiv Detail & Related papers (2023-11-27T16:15:05Z) - Quantum teleportation and dynamics of quantum coherence and metrological
non-classical correlations for open two-qubit systems: A study of Markovian
and non-Markovian regimes [0.0]
We study the dynamics of non-classical correlations and quantum coherence in open quantum systems.
Our focus is on a system of two qubits in two distinct physical situations.
We establish a quantum teleportation strategy based on the two different physical scenarios.
arXiv Detail & Related papers (2023-09-05T11:41:04Z) - Correlation measures of a quantum state and information characteristics
of a quantum channel [0.0]
We discuss the interconnections between basic correlation measures of a bipartite quantum state and basic information characteristics of a quantum channel.
We describe properties of the (unoptimized and optimized) quantum discord in infinite bipartite systems.
arXiv Detail & Related papers (2023-04-11T17:58:13Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - One-shot quantum state redistribution and quantum Markov chains [15.66921140731163]
We revisit the task of quantum state redistribution in the one-shot setting.
We design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains.
Our result is the first to operationally connect quantum state redistribution and quantum chains.
arXiv Detail & Related papers (2021-04-18T07:34:22Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Realization of Quantum Darwinism State on Quantum Computers [0.0]
We experimentally realize the Darwinism state constructed by this system's ensemble on two real devices.
We then use the results to investigate quantum-classical correlation and the mutual information present between the system and the environment.
arXiv Detail & Related papers (2020-12-10T06:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.