論文の概要: Safe Formulas in the General Theory of Stable Models
- arxiv url: http://arxiv.org/abs/2307.09166v1
- Date: Sat, 15 Jul 2023 08:09:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 15:01:36.255390
- Title: Safe Formulas in the General Theory of Stable Models
- Title(参考訳): 安定模型の一般理論における安全な公式
- Authors: Joohyung Lee, Vladimir Lifschitz, Ravi Palla
- Abstract要約: 安全な文は、ある意味では、その根拠となる結果と等価であることを示す。
安全な文とその接地の結果は、同じ安定なモデルを持つ。
- 参考スコア(独自算出の注目度): 2.521459338367434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe first-order formulas generalize the concept of a safe rule, which plays
an important role in the design of answer set solvers. We show that any safe
sentence is equivalent, in a certain sense, to the result of its grounding --
to the variable-free sentence obtained from it by replacing all quantifiers
with multiple conjunctions and disjunctions. It follows that a safe sentence
and the result of its grounding have the same stable models, and that the
stable models of a safe sentence can be characterized by a formula of a simple
syntactic form.
- Abstract(参考訳): 安全な一階式は安全な規則の概念を一般化し、応答集合の解法の設計において重要な役割を果たす。
任意の安全な文は、ある意味では、その基底となる結果と同値であることを示す - すべての量化器を複数の接続と接続に置き換えることで得られる変数自由な文に。
安全な文とその接地の結果は同じ安定なモデルを持ち、安全な文の安定モデルは単純な構文形式の公式によって特徴づけられる。
関連論文リスト
- (Quantum) Indifferentiability and Pre-Computation [50.06591179629447]
微分可能性(Indifferentiability)は、理想的なオブジェクトのセキュリティを分析するための暗号パラダイムである。
その強さにもかかわらず、前処理攻撃に対するセキュリティを提供する無差別性は知られていない。
本稿では、構成可能であるだけでなく、任意の事前計算を考慮に入れた微分可能性の強化を提案する。
論文 参考訳(メタデータ) (2024-10-22T00:41:47Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - Nondeterministic Causal Models [7.550566004119157]
非巡回決定論的構造方程式モデルを非決定論的ケースに一般化する。
結果の論理の完全公理化を行う。
論文 参考訳(メタデータ) (2024-05-22T21:17:52Z) - Emulated Disalignment: Safety Alignment for Large Language Models May Backfire! [65.06450319194454]
大きな言語モデル(LLM)は、人間との安全な会話を確保するために安全アライメントを行う。
本稿では,安全アライメントの反転が可能なトレーニングフリーアタック手法を提案する。
本手法をエミュレートした脱アライメント (ED) と呼ぶのは, このコントラスト分布からのサンプリングは, 安全報酬を最小限に抑えるため, 微調整の結果を確実にエミュレートするからである。
論文 参考訳(メタデータ) (2024-02-19T18:16:51Z) - Distributionally Safe Reinforcement Learning under Model Uncertainty: A
Single-Level Approach by Differentiable Convex Programming [4.825619788907192]
We present a tractable distributionally safe reinforcement learning framework to enforce safety under a distributional shift by a Wasserstein metric。
トラクタビリティを向上させるために、まず双対性理論を用いて、低次最適化を無限次元確率空間から有限次元パラメトリック空間に変換する。
微分可能凸プログラミングにより、二段階安全な学習問題は、さらに2つの逐次計算効率のモジュールを持つ1つのレベルに削減される。
論文 参考訳(メタデータ) (2023-10-03T22:05:05Z) - On Loop Formulas with Variables [2.1955512452222696]
最近、フェラーリス、リー、リフシッツはグラウンド化に言及しない安定モデルの新たな定義を提案した。
我々は、Chen, Lin, Wang, Zhang による変数を持つループ公式のアイデアとの関係を示す。
論理プログラムの構文を拡張して、明示的な量化を許容し、その意味論を安定モデルの新しい言語のサブクラスとして定義する。
論文 参考訳(メタデータ) (2023-07-15T06:20:43Z) - A Hybrid System for Systematic Generalization in Simple Arithmetic
Problems [70.91780996370326]
本稿では,記号列に対する合成的および体系的推論を必要とする算術的問題を解くことができるハイブリッドシステムを提案する。
提案システムは,最も単純なケースを含むサブセットでのみ訓練された場合においても,ネストした数式を正確に解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-29T18:35:41Z) - Your Policy Regularizer is Secretly an Adversary [13.625408555732752]
報奨関数の最悪の摂動に対して,頑健性がヘッジングによって生じることを示す。
我々は、KLとα偏差正規化の下で、この頑健な対向報酬摂動を特徴付ける。
本稿では、最悪の報酬摂動に関する詳細な議論と、この堅牢性を示す直感的な経験例を紹介する。
論文 参考訳(メタデータ) (2022-03-23T17:54:20Z) - Fail-Safe Adversarial Generative Imitation Learning [9.594432031144716]
本稿では, 安全な生成連続ポリシー, エンドツーエンドの生成逆トレーニング, 最悪の場合の安全性保証を, クローズドフォームの確率密度/勾配で実現する安全層を提案する。
安全層は、すべてのアクションを安全なアクションの集合にマッピングし、変量式と密度の測定値の加算率を使用する。
実世界のドライバーのインタラクションデータに関する実験では,提案手法のトラクタビリティ,安全性,模倣性能を実証的に実証した。
論文 参考訳(メタデータ) (2022-03-03T13:03:06Z) - Robustness Guarantees for Mode Estimation with an Application to Bandits [131.21717367564963]
平均ではなく報酬分布のモードを値とするマルチアームバンディットの理論を導入する。
我々は,我々のアルゴリズムが逆雑音列による腕の摂動に頑健であることを示すシミュレーションで示す。
論文 参考訳(メタデータ) (2020-03-05T21:29:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。