Post-variational quantum neural networks
- URL: http://arxiv.org/abs/2307.10560v2
- Date: Fri, 5 Apr 2024 08:38:13 GMT
- Title: Post-variational quantum neural networks
- Authors: Po-Wei Huang, Patrick Rebentrost,
- Abstract summary: "Post-variational strategies" shift tunable parameters from the quantum computer to the classical computer.
We show that post-variational quantum neural networks using our architectural designs can potentially provide better results than variational algorithms.
- Score: 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid quantum-classical computing in the noisy intermediate-scale quantum (NISQ) era with variational algorithms can exhibit barren plateau issues, causing difficult convergence of gradient-based optimization techniques. In this paper, we discuss "post-variational strategies", which shift tunable parameters from the quantum computer to the classical computer, opting for ensemble strategies when optimizing quantum models. We discuss various strategies and design principles for constructing individual quantum circuits, where the resulting ensembles can be optimized with convex programming. Further, we discuss architectural designs of post-variational quantum neural networks and analyze the propagation of estimation errors throughout such neural networks. Finally, we show that empirically, post-variational quantum neural networks using our architectural designs can potentially provide better results than variational algorithms and performance comparable to that of two-layer neural networks.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - A Hybrid Quantum-Classical Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control Problems [1.4811951486536687]
The study showcases an innovative approach to optimizing quantum state manipulations.
The proposed hybrid model effectively applies machine learning techniques to solve optimal control problems.
This is illustrated through the design and implementation of a hybrid PINN network to solve a quantum state transition problem.
arXiv Detail & Related papers (2024-04-23T13:22:22Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - A Comparative Analysis of Hybrid-Quantum Classical Neural Networks [5.247197295547863]
This paper performs an extensive comparative analysis between different hybrid quantum-classical machine learning algorithms for image classification.
The performance comparison of the hybrid models, based on the accuracy, provides us with an understanding of hybrid quantum-classical convergence in correlation with the quantum layer count and the qubit count variations in the circuit.
arXiv Detail & Related papers (2024-02-16T09:59:44Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
arXiv Detail & Related papers (2021-10-05T01:06:54Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.