論文の概要: Learning-based Control for PMSM Using Distributed Gaussian Processes
with Optimal Aggregation Strategy
- arxiv url: http://arxiv.org/abs/2307.13945v1
- Date: Wed, 26 Jul 2023 03:56:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 13:38:09.978860
- Title: Learning-based Control for PMSM Using Distributed Gaussian Processes
with Optimal Aggregation Strategy
- Title(参考訳): 最適集約戦略を用いた分散ガウス過程を用いたPMSMの学習制御
- Authors: Zhenxiao Yin, Xiaobing Dai, Zewen Yang, Yang Shen, Georges Hattab,
Hang Zhao
- Abstract要約: 機械学習技術は、システムの未知の部分を推論するために広く使われている。
実用的な実装では、分散GPRを用いて高い計算複雑性を緩和する。
Lyapunov 安定性理論に基づいて,PMSM の分散 GPR の最適集約戦略を提案する。
- 参考スコア(独自算出の注目度): 16.7267979284111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for accurate control in varying and unknown environments
has sparked a corresponding increase in the requirements for power supply
components, including permanent magnet synchronous motors (PMSMs). To infer the
unknown part of the system, machine learning techniques are widely employed,
especially Gaussian process regression (GPR) due to its flexibility of
continuous system modeling and its guaranteed performance. For practical
implementation, distributed GPR is adopted to alleviate the high computational
complexity. However, the study of distributed GPR from a control perspective
remains an open problem. In this paper, a control-aware optimal aggregation
strategy of distributed GPR for PMSMs is proposed based on the Lyapunov
stability theory. This strategy exclusively leverages the posterior mean,
thereby obviating the need for computationally intensive calculations
associated with posterior variance in alternative approaches. Moreover, the
straightforward calculation process of our proposed strategy lends itself to
seamless implementation in high-frequency PMSM control. The effectiveness of
the proposed strategy is demonstrated in the simulations.
- Abstract(参考訳): 様々な環境や未知環境における正確な制御の需要の増大は、永久磁石同期モータ(PMSM)を含む電源部品の需要の増大に拍車をかけた。
システムの未知部分を推定するために機械学習技術が広く採用されており、特にガウス過程回帰(GPR)は連続系モデリングの柔軟性と性能保証のためである。
実用的な実装では、分散GPRを用いて高い計算複雑性を緩和する。
しかし, 制御的観点からの分散gprの研究は未解決の問題である。
本稿では,Lyapunov 安定性理論に基づいて,PMSM に対する分散 GPR の最適集約戦略を提案する。
この戦略は後方平均を排他的に活用するので、別のアプローチで後方分散に関連する計算集約的な計算の必要性がなくなる。
さらに,提案手法の簡易な計算プロセスは,高周波pmsm制御におけるシームレスな実装に有用である。
提案手法の有効性をシミュレーションで実証した。
関連論文リスト
- Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
本研究は,Quanser Aero 2システムに適用された深層強化学習(DRL)アルゴリズムであるモデル予測制御(MPC)とPPOの比較分析を行う。
PPOは上昇時間と適応性に優れており、迅速な応答と適応性を必要とするアプリケーションには有望なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:35:34Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Decentralized Event-Triggered Online Learning for Safe Consensus of
Multi-Agent Systems with Gaussian Process Regression [3.405252606286664]
本稿では,補助力学によって強化された,学習に基づく分散制御法を提案する。
予測性能を継続的に向上するために、分散イベントトリガー機構を備えたデータ効率の高いオンライン学習戦略を提案する。
提案手法の有効性を示すため,従来の分散制御法とオフライン学習法を対比して比較分析を行った。
論文 参考訳(メタデータ) (2024-02-05T16:41:17Z) - Deployable Reinforcement Learning with Variable Control Rate [14.838483990647697]
可変制御率を持つ強化学習(RL)の変種を提案する。
このアプローチでは、ポリシーは、エージェントが取るべきアクションと、そのアクションに関連する時間ステップの期間を決定する。
ニュートンキネマティクスを用いたエージェントを駆動する概念実証シミュレーションによりSEACの有効性を示す。
論文 参考訳(メタデータ) (2024-01-17T15:40:11Z) - Non-stationary Reinforcement Learning under General Function
Approximation [60.430936031067006]
まず,非定常MDPに対する動的ベルマンエルダー次元(DBE)と呼ばれる新しい複雑性指標を提案する。
提案する複雑性指標に基づいて,SW-OPEAと呼ばれる新しい信頼度セットに基づくモデルフリーアルゴリズムを提案する。
SW-OPEAは,変動予算がそれほど大きくない限り,有効に有効であることを示す。
論文 参考訳(メタデータ) (2023-06-01T16:19:37Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
アクティブな再構成可能なインテリジェントサーフェス(RIS)支援マルチユーザダウンリンク通信システムについて検討した。
非直交多重アクセス(NOMA)はスペクトル効率を向上させるために使用され、活性RISはエネルギー回収(EH)によって駆動される。
ユーザの動的通信状態を予測するために,高度なLSTMベースのアルゴリズムを開発した。
増幅行列と位相シフト行列RISを結合制御するためにDDPGに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-11T13:16:28Z) - Optimization of the Model Predictive Control Meta-Parameters Through
Reinforcement Learning [1.4069478981641936]
強化学習(RL)を用いて制御アルゴリズムの任意のパラメータを協調的に調整できる新しいフレームワークを提案する。
我々は,倒立振子制御タスクの枠組みを実証し,制御システムの総時間を36%削減するとともに,最高性能のMPCベースラインよりも18.4%向上した。
論文 参考訳(メタデータ) (2021-11-07T18:33:22Z) - Generative Actor-Critic: An Off-policy Algorithm Using the Push-forward
Model [24.030426634281643]
連続制御タスクでは、ガウス分布を用いた広く使われているポリシーは、環境の非効率な探索をもたらす。
本稿では,ポリシの表現性を高めるためにプッシュフォワードモデルを用いて,密度のないオフポリチックアルゴリズムGenerative Actor-Criticを提案する。
プッシュフォワードポリシには,マルチモーダリティなどの望ましい特徴があり,アルゴリズムの探索と性能を向上できることを示す。
論文 参考訳(メタデータ) (2021-05-08T16:29:20Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。