論文の概要: Prediction of depression status in college students using a Naive Bayes
classifier based machine learning model
- arxiv url: http://arxiv.org/abs/2307.14371v1
- Date: Tue, 25 Jul 2023 13:53:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 17:16:44.665075
- Title: Prediction of depression status in college students using a Naive Bayes
classifier based machine learning model
- Title(参考訳): Naive Bayes分類器を用いた機械学習モデルを用いた大学生の抑うつ状態の予測
- Authors: Fred Torres Cruz, Evelyn Eliana Coaquira Flores, Sebastian Jarom
Condori Quispe
- Abstract要約: その目的は,Naive Bayes分類器に基づいて,70%のトレーニングデータと30%の検証データを含む機械学習モデルを用いて予測精度を向上させることであった。
その結果, 78.03%の精度, うつ病の陽性症例, 特に中等度, 重症度で高い感度, 陰性症例を正しく分類する上で有意な特異性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a machine learning model based on the Naive Bayes
classifier for predicting the level of depression in university students, the
objective was to improve prediction accuracy using a machine learning model
involving 70% training data and 30% validation data based on the Naive Bayes
classifier, the collected data includes factors associated with depression from
519 university students, the results showed an accuracy of 78.03%, high
sensitivity in detecting positive cases of depression, especially at moderate
and severe levels, and significant specificity in correctly classifying
negative cases, these findings highlight the effectiveness of the model in
early detection and treatment of depression, benefiting vulnerable sectors and
contributing to the improvement of mental health in the student population.
- Abstract(参考訳): This study presents a machine learning model based on the Naive Bayes classifier for predicting the level of depression in university students, the objective was to improve prediction accuracy using a machine learning model involving 70% training data and 30% validation data based on the Naive Bayes classifier, the collected data includes factors associated with depression from 519 university students, the results showed an accuracy of 78.03%, high sensitivity in detecting positive cases of depression, especially at moderate and severe levels, and significant specificity in correctly classifying negative cases, these findings highlight the effectiveness of the model in early detection and treatment of depression, benefiting vulnerable sectors and contributing to the improvement of mental health in the student population.
関連論文リスト
- Systematic Review: Text Processing Algorithms in Machine Learning and Deep Learning for Mental Health Detection on Social Media [0.037693031068634524]
本稿では,ソーシャルメディア上での抑うつ検出のための機械学習モデルの評価を行う。
モデルの信頼性と一般化可能性に影響を及ぼす重要なバイアスが見つかった。
否定のような言語的なニュアンスに明示的に対応した研究はわずか23%で、正確な感情分析に欠かせないものだった。
論文 参考訳(メタデータ) (2024-10-21T17:05:50Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Assessing ML Classification Algorithms and NLP Techniques for Depression Detection: An Experimental Case Study [0.6524460254566905]
うつ病は世界中で何百万人もの人々に影響を与えており、最も一般的な精神疾患の1つとなっている。
近年の研究では、機械学習(ML)と自然言語処理(NLP)のツールや技術がうつ病の診断に広く用いられていることが証明されている。
しかし, 外傷後ストレス障害 (PTSD) などの他の症状が存在するうつ病検出アプローチの評価には, 依然としていくつかの課題がある。
論文 参考訳(メタデータ) (2024-04-03T19:45:40Z) - A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images [71.26717896083433]
自己教師付き事前学習は,伝達学習における特徴表現の改善に有効であることが観察されている。
本総説ではX線, CT, 磁気共鳴, 超音波画像における使用法について概説する。
論文 参考訳(メタデータ) (2023-09-05T19:45:09Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
この研究は、抑うつが音声から抽出した特徴間の相関を変化させることを示す。
このような洞察を用いることで、SVMとLSTMに基づく抑うつ検出器のトレーニング速度と性能を向上させることができる。
論文 参考訳(メタデータ) (2023-07-06T09:54:35Z) - Evaluation of self-supervised pre-training for automatic infant movement
classification using wearable movement sensors [2.995873287514728]
乳幼児ウェアラブルMAIJUは、乳幼児の運動性能を病院外環境で自動的に評価する手段を提供する。
そこで本研究では,MAIJU録音の分析に用いる分類器の性能向上について検討した。
論文 参考訳(メタデータ) (2023-05-16T11:46:16Z) - Mixed Effects Random Forests for Personalised Predictions of Clinical
Depression Severity [2.6572038957677657]
本研究は,マルチモーダルな生理・デジタル活動データを用いて,無作為な森林がうつ病の重症度を正確に予測する方法を実証する。
臨床うつ病評価尺度(S_17)では,無作為林の混合効果が,標準ランダム林と個人平均ベースラインを上回っていることが示されている。
モデルパラメータをデータセット内の個人にパーソナライズする混合効果ランダムフォレストの有効性により,この結果が向上することが示唆された。
論文 参考訳(メタデータ) (2023-01-24T04:50:55Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。