論文の概要: Demystifying Code Snippets in Code Reviews: A Study of the OpenStack and
Qt Communities and A Practitioner Survey
- arxiv url: http://arxiv.org/abs/2307.14406v2
- Date: Mon, 25 Dec 2023 02:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 22:37:20.141880
- Title: Demystifying Code Snippets in Code Reviews: A Study of the OpenStack and
Qt Communities and A Practitioner Survey
- Title(参考訳): コードレビューにおけるコードスニペットの最小化 - OpenStackコミュニティとQtコミュニティの検討と実践者調査
- Authors: Beiqi Zhang, Liming Fu, Peng Liang, Jiaxin Yu, Chong Wang
- Abstract要約: コードレビューのコードスニペットに関する情報と知識をマイニングするために、混合メソッドの研究を行います。
調査の結果は、レビュー担当者が開発者がコードレビューに必要な特定の情報を満たすために、適切なシナリオでコードスニペットを提供することができることを強調している。
- 参考スコア(独自算出の注目度): 6.534954885199453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code review is widely known as one of the best practices for software quality
assurance in software development. In a typical code review process, reviewers
check the code committed by developers to ensure the quality of the code,
during which reviewers and developers would communicate with each other in
review comments to exchange necessary information. As a result, understanding
the information in review comments is a prerequisite for reviewers and
developers to conduct an effective code review. Code snippet, as a special form
of code, can be used to convey necessary information in code reviews. For
example, reviewers can use code snippets to make suggestions or elaborate their
ideas to meet developers' information needs in code reviews. However, little
research has focused on the practices of providing code snippets in code
reviews. To bridge this gap, we conduct a mixed-methods study to mine
information and knowledge related to code snippets in code reviews, which can
help practitioners and researchers get a better understanding about using code
snippets in code review. Specifically, our study includes two phases: mining
code review data and conducting practitioners' survey. The study results
highlight that reviewers can provide code snippets in appropriate scenarios to
meet developers' specific information needs in code reviews, which will
facilitate and accelerate the code review process.
- Abstract(参考訳): コードレビューはソフトウェア開発におけるソフトウェア品質保証のベストプラクティスの1つとして広く知られている。
典型的なコードレビュープロセスでは、レビュー担当者が開発者がコミットしたコードをチェックして、コードの品質を保証する。
結果として、レビューコメントの情報を理解することは、レビュアーや開発者が効果的なコードレビューを行うための前提条件となる。
コードスニペットは、特別なコード形式として、コードレビューに必要な情報を伝えるために使用できる。
例えば、レビュアはコードスニペットを使って提案したり、アイデアを精巧にすることで、コードレビューで開発者に必要な情報を満たすことができる。
しかし、コードレビューにコードスニペットを提供するプラクティスに注目した研究はほとんどない。
このギャップを埋めるために、コードレビューのコードスニペットに関する情報と知識をマイニングする混合手法の研究を行い、実践者や研究者がコードレビューでコードスニペットを使用することについて理解を深めるのに役立つ。
具体的には,コードレビューデータのマイニングと実践者の調査の2段階を含む。
調査の結果は、レビュー担当者がコードレビューで開発者が必要とする特定の情報を満たすために、適切なシナリオでコードスニペットを提供することができる点を強調している。
関連論文リスト
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
GitHub上のJavaオープンソースプロジェクトからの2,401のコードレビューコメントを分析した。
改善提案の83.9%が承認され、統合され、1%未満が後に復活した。
論文 参考訳(メタデータ) (2024-10-29T12:21:23Z) - Help Me to Understand this Commit! -- A Vision for Contextualized Code
Reviews [4.87707664110891]
Modern Code Reviewでコード理解を改善するためのビジョンを提供することを目標としています。
我々は,4種類のサポートシステムを特定し,コンテクスト化されたコードレビュー環境を提案する。
論文 参考訳(メタデータ) (2024-02-14T19:08:47Z) - Exploring the Advances in Identifying Useful Code Review Comments [0.0]
本稿では,コードレビューコメントの有用性に関する研究の進化を反映する。
コードレビューコメントの有用性を定義し、データセットのマイニングとアノテーションを定義し、開発者の認識を調査し、異なる側面から要因を分析し、機械学習分類器を使用してコードレビューコメントの有用性を自動的に予測する。
論文 参考訳(メタデータ) (2023-07-03T00:41:20Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
コードインテリジェンスのトレーニング済みモデルのほとんどは実行トレースを無視しており、ソースコードと構文構造のみに依存している。
我々は,大規模かつ現実的なPythonデータセットとコード実行タスクを作成するために,突然変異に基づくデータ拡張手法を開発した。
次に、コード実行事前学習とカリキュラム学習を活用して意味理解を強化するトランスフォーマーモデルであるCodeExecutorを提案する。
論文 参考訳(メタデータ) (2023-05-08T10:00:05Z) - What Makes a Code Review Useful to OpenDev Developers? An Empirical
Investigation [4.061135251278187]
コードレビューの有効性が少し改善されても、ソフトウェア開発組織にとってかなりの節約が得られます。
本研究の目的は,コードレビューコメントをOSS開発者に有用なものにする方法を,より精細に理解することである。
論文 参考訳(メタデータ) (2023-02-22T22:48:27Z) - CodeReviewer: Pre-Training for Automating Code Review Activities [36.40557768557425]
本研究は,コードレビューシナリオにおけるタスクの事前学習技術を活用することに焦点を当てる。
私たちは、最も人気のある9つのプログラミング言語で、オープンソースのプロジェクトから、現実世界のコード変更とコードレビューの大規模なデータセットを収集します。
コード差分とレビューをよりよく理解するために、コードレビューセナリオに特化した4つの事前トレーニングタスクを利用する事前トレーニングモデルであるCodeReviewerを提案する。
論文 参考訳(メタデータ) (2022-03-17T05:40:13Z) - CodeRetriever: Unimodal and Bimodal Contrastive Learning [128.06072658302165]
関数レベルのコードセマンティック表現を訓練するために,一様および二様のコントラスト学習を組み合わせたCodeRetrieverモデルを提案する。
ノンモーダルなコントラスト学習のために、文書と関数名に基づいてポジティブなコードペアを構築するためのセマンティックガイド付き手法を設計する。
バイモーダルなコントラスト学習では、コードのドキュメンテーションとインラインコメントを活用して、テキストコードペアを構築します。
論文 参考訳(メタデータ) (2022-01-26T10:54:30Z) - Predicting Code Review Completion Time in Modern Code Review [12.696276129130332]
Modern Code Review (MCR)は、オープンソースと商用の両方で共通のプラクティスとして採用されている。
コードレビューは、様々な社会的技術的要因のために完了するのにかなりの遅延を経験することができる。
コードレビューの完了に必要な時間を見積もるためのツールサポートが不足している。
論文 参考訳(メタデータ) (2021-09-30T14:00:56Z) - COSEA: Convolutional Code Search with Layer-wise Attention [90.35777733464354]
我々は、畳み込みニューラルネットワークを階層的注意で活用し、コード固有の構造論理をキャプチャする新しいディープラーニングアーキテクチャ、COSEAを提案する。
COSEAは、コード検索タスクの最先端メソッドよりも大幅に改善できる。
論文 参考訳(メタデータ) (2020-10-19T13:53:38Z) - Deep Just-In-Time Inconsistency Detection Between Comments and Source
Code [51.00904399653609]
本稿では,コード本体の変更によりコメントが矛盾するかどうかを検出することを目的とする。
私たちは、コメントとコードの変更を関連付けるディープラーニングアプローチを開発しています。
より包括的な自動コメント更新システムを構築するために,コメント更新モデルと組み合わせて提案手法の有用性を示す。
論文 参考訳(メタデータ) (2020-10-04T16:49:28Z) - Code Review in the Classroom [57.300604527924015]
教室設定の若い開発者は、コードレビュープロセスの潜在的に有利で問題のある領域の明確な図を提供している。
彼らのフィードバックは、プロセスはプロセスを改善するためにいくつかのポイントで十分に受け入れられていることを示唆している。
本論文は,教室でコードレビューを行うためのガイドラインとして利用することができる。
論文 参考訳(メタデータ) (2020-04-19T06:07:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。