論文の概要: Predicting delays in Indian lower courts using AutoML and Decision
Forests
- arxiv url: http://arxiv.org/abs/2307.16285v1
- Date: Sun, 30 Jul 2023 17:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 16:38:11.426457
- Title: Predicting delays in Indian lower courts using AutoML and Decision
Forests
- Title(参考訳): AutoMLとDecision Forestsを用いたインド下級裁判所の遅延予測
- Authors: Mohit Bhatnagar, Shivraj Huchhanavar
- Abstract要約: 本稿では,出願時に利用可能な事例情報に基づいて,インドの下級裁判所における遅延を予測する分類モデルを提案する。
このモデルは2010年に提出された4200万件の訴訟のデータセットと、10年間にわたる結果に基づいて構築されている。
最良のモデルは81.4%の精度を達成し、精度、リコール、F1は0.81であることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a classification model that predicts delays in Indian
lower courts based on case information available at filing. The model is built
on a dataset of 4.2 million court cases filed in 2010 and their outcomes over a
10-year period. The data set is drawn from 7000+ lower courts in India. The
authors employed AutoML to develop a multi-class classification model over all
periods of pendency and then used binary decision forest classifiers to improve
predictive accuracy for the classification of delays. The best model achieved
an accuracy of 81.4%, and the precision, recall, and F1 were found to be 0.81.
The study demonstrates the feasibility of AI models for predicting delays in
Indian courts, based on relevant data points such as jurisdiction, court,
judge, subject, and the parties involved. The paper also discusses the results
in light of relevant literature and suggests areas for improvement and future
research. The authors have made the dataset and Python code files used for the
analysis available for further research in the crucial and contemporary field
of Indian judicial reform.
- Abstract(参考訳): 本稿では,インドの下級裁判所において,出願時に利用可能な事例情報に基づいて遅延を予測する分類モデルを提案する。
このモデルは2010年に提出された4200万件の訴訟のデータセットと、10年間にわたる結果に基づいて構築されている。
データセットはインドの7000以上の下級裁判所から作成されている。
著者らはAutoMLを用いて、ペンダンシーのすべての期間にわたるマルチクラス分類モデルを開発し、二分決定森林分類器を使用して遅延分類の予測精度を向上した。
最良のモデルは81.4%の精度を達成し、精度、リコール、f1は0.81であった。
この研究は、司法、裁判所、裁判官、主題、関連する当事者など、関連するデータポイントに基づいて、インドの裁判所で遅延を予測するAIモデルの実現可能性を示している。
また,研究成果を文献に照らして考察し,改善と今後の研究の分野を提案する。
著者らは、この分析に使用されるデータセットとPythonのコードファイルを作成し、インドにおける司法改革の重要かつ現代的な分野のさらなる研究に利用した。
関連論文リスト
- Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
判例検索は、ある事実記述の参照として類似した事例を提供することを目的としている。
既存の作業は主に、長いクエリを使ったケース・ツー・ケースの検索に重点を置いている。
データスケールは、既存のデータハングリーニューラルネットワークのトレーニング要件を満たすには不十分である。
論文 参考訳(メタデータ) (2024-10-09T06:26:39Z) - Efficient Document Ranking with Learnable Late Interactions [73.41976017860006]
クロスエンコーダ(CE)とデュアルエンコーダ(DE)モデルは,情報検索におけるクエリドキュメント関連性の2つの基本的なアプローチである。
関連性を予測するため、CEモデルは共同クエリドキュメントの埋め込みを使用し、DEモデルは分解クエリとドキュメントの埋め込みを維持している。
近年、DEM構造と軽量スコアラを用いて、より好ましいレイテンシ品質のトレードオフを実現するために、遅延相互作用モデルが提案されている。
論文 参考訳(メタデータ) (2024-06-25T22:50:48Z) - Convolutional Neural Networks can achieve binary bail judgement
classification [0.5013868868152144]
我々は,ヒンディー語法文書のコーパス上に,畳み込みニューラルネットワーク(CNN)アーキテクチャをデプロイする。
我々はCNNモデルの助けを借りて保釈予測を行い、全体的な精度は93%である。
論文 参考訳(メタデータ) (2024-01-25T12:31:41Z) - SLJP: Semantic Extraction based Legal Judgment Prediction [0.0]
LJP(Lawal Judgment Prediction)は、像、刑期、刑期などの法的要素を推奨する司法支援システムである。
既存のインドのモデルのほとんどは、決定に影響を及ぼす事実記述(FD)に埋め込まれた意味論に十分に集中していなかった。
提案した意味抽出に基づく LJP (SLJP) モデルは, 複雑な非構造化の判例文書理解のための事前学習型変換器の利点を提供する。
論文 参考訳(メタデータ) (2023-12-13T08:50:02Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
大規模な事前訓練型言語モデル(LLM)は、しばしば伝統的な検索エンジンの代替として、広く使われるようになった。
しかし、言語モデルは説得力のあるが事実的に不正確な主張をしがちである(しばしば「幻覚」と呼ばれる)。
本研究では,人間のラベル付けなしに,より現実的な言語モデルを微調整する。
論文 参考訳(メタデータ) (2023-11-14T18:59:15Z) - Exploring Graph Neural Networks for Indian Legal Judgment Prediction [39.0233340304095]
本研究は,LJP問題に対処するグラフニューラルネットワークに基づくモデルの構築に焦点を当てる。
モデルの特徴として様々な埋め込みを探索し、時間ノードや司法行為などのノードを追加し、モデルの性能を評価する。
また、2つの特定ノード間の接続を予想する際のモデルの習熟度を評価するためのリンク予測タスクも実施する。
論文 参考訳(メタデータ) (2023-10-19T14:55:51Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Are Models Trained on Indian Legal Data Fair? [20.162205920441895]
法律分野におけるインドの観点からの公正性に関する最初の調査を提示する。
本研究では、保釈予測タスクのために訓練された決定木モデルにおいて、ヒンドゥー教とムスリムに関連する入力特徴間の全体的な公平性格差が0.237であることを示す。
論文 参考訳(メタデータ) (2023-03-13T16:20:33Z) - Predicting Indian Supreme Court Judgments, Decisions, Or Appeals [0.403831199243454]
新たに開発したML対応法定予測モデルとその運用プロトタイプであるeLegPredictを紹介した。
eLegPredictは3072件の最高裁判所事件で訓練されテストされ、精度は76%に達した(F1スコア)。
eLegPredictはエンドユーザを支援するメカニズムを備えており、新しいケース記述を持つドキュメントが指定されたディレクトリにドロップされると、システムはすぐにコンテンツを読み込んで予測を生成する。
論文 参考訳(メタデータ) (2021-09-28T18:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。