Lack of near-sightedness principle in non-Hermitian systems
- URL: http://arxiv.org/abs/2308.00776v2
- Date: Tue, 3 Oct 2023 09:21:03 GMT
- Title: Lack of near-sightedness principle in non-Hermitian systems
- Authors: Helene Spring, Viktor K\"onye, Anton R. Akhmerov, Ion Cosma Fulga
- Abstract summary: We show that the non-Hermitian skin effect is not a topological phenomenon in general.
When translation symmetry is broken by a single non-Hermitian impurity, skin modes are depleted at the boundary and accumulate at the impurity site.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The non-Hermitian skin effect is a phenomenon in which an extensive number of
states accumulates at the boundaries of a system. It has been associated to
nontrivial topology, with nonzero bulk invariants predicting its appearance and
its position in real space. Here we demonstrate that the non-Hermitian skin
effect is not a topological phenomenon in general: when translation symmetry is
broken by a single non-Hermitian impurity, skin modes are depleted at the
boundary and accumulate at the impurity site, without changing any bulk
invariant. This may occur even for a fully Hermitian bulk.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Anomalous symmetry protected blockade of skin effect in one-dimensional non-Hermitian lattice systems [20.4728241808175]
We present a theorem which shows that the combined spatial reflection symmetry can be considered as a criterion in one-dimensional non-Hermitian systems.
Our results reveal a profound connection between the symmetry and the fate of NHSE.
arXiv Detail & Related papers (2024-07-29T07:57:59Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Incoherent non-Hermitian skin effect in photonic quantum walks [0.0]
The non-Hermitian skin effect describes the concentration of an extensive number of eigenstates near the boundaries of certain dissipative systems.
Here we push the concept of skin effect into the fully incoherent regime and show that rather generally (but not universally) the non-Hermitian skin effect persists under dephasing dynamics.
arXiv Detail & Related papers (2024-04-06T07:30:35Z) - Disorder-Induced Entanglement Phase Transitions in Non-Hermitian Systems
with Skin Effects [20.88126933913389]
We study the dynamics of a many-body state of free fermions in the paradigmatic Hatano-Nelson model with open boundaries.
We find that the area-law behavior of the entanglement entropy in the pristine Hatano-Nelson model develops into a logarithmic scaling for small disorder strength.
arXiv Detail & Related papers (2023-05-21T04:34:05Z) - Non-Hermitian Chiral Skin Effect [0.10499611180329801]
We discover an alternative form of the non-Hermitian skin effect called the non-Hermitian chiral skin effect (NHCSE)
NHCSE is a non-Hermitian skin effect under periodic boundary condition rather than open boundary condition.
As a result, the intrinsic mechanism of the hybrid skin-topological effect in Chern insulators is fully understood via NHCSE.
arXiv Detail & Related papers (2023-04-04T00:12:05Z) - Symmetric non-Hermitian skin effect with emergent nonlocal
correspondence [10.704938459679978]
The non-Hermitian skin effect (NHSE) refers to that an extensive number of eigenstates of a non-Hermitian system are localized in open boundaries.
Here we predict a universal phenomenon that with local particle-hole(-like) symmetry the skin modes must be equally distributed on different boundaries.
We develop a generic theory for the emergent nonlocal symmetry-protected NHSE by connecting the non-Hermitian system to an extended Hermitian Hamiltonian in aruplicate Hilbert space.
arXiv Detail & Related papers (2023-02-26T02:37:55Z) - Anomalously large relaxation times in dissipative lattice models beyond
the non-Hermitian skin effect [49.1574468325115]
We show for generic quantum non-Hermitian tight-binding models that relaxation of local observables are not controlled by the localization length.
interference between eigenvectors effectively makes the extreme localization of modes largely irrelevant to relaxation.
Our work highlights an important aspect of the non-Hermitian skin effect: the exceptional sensitivity to boundary conditions here necessarily takes a finite amount of time to manifest itself.
arXiv Detail & Related papers (2022-10-25T17:55:58Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Magnetic suppression of non-Hermitian skin effects [10.933587894257421]
Skin effect, where macroscopically many bulk states are aggregated towards the system boundary, is one of the most important and distinguishing phenomena in non-Hermitian quantum systems.
We discuss a new aspect of this effect whereby, despite its topological origin, applying magnetic field can largely suppress it.
arXiv Detail & Related papers (2021-10-28T01:44:15Z) - Non-Hermitian Edge Burst [1.6033520575204165]
We unveil an unexpected non-Hermitian phenomenon, dubbed edge burst, in non-Hermitian quantum dynamics.
Our predictions are experimentally accessible in various non-Hermitian systems including quantum-optical and cold-atom platforms.
arXiv Detail & Related papers (2021-09-29T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.