論文の概要: Outlier-robust neural network training: variation regularization meets trimmed loss to prevent functional breakdown
- arxiv url: http://arxiv.org/abs/2308.02293v4
- Date: Tue, 13 May 2025 00:35:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.081178
- Title: Outlier-robust neural network training: variation regularization meets trimmed loss to prevent functional breakdown
- Title(参考訳): Outlier-robust Neural Network Training: 変動正規化は機能的破壊を防ぐためのトリミング損失に適合する
- Authors: Akifumi Okuno, Shotaro Yagishita,
- Abstract要約: 我々は,高度に表現力のあるニューラルネットワークを用いた外乱予測モデリングの課題に取り組む。
提案手法は,(1)変換トリミング損失(TTL)と(2)高次変動正規化(HOVR)の2つの重要な要素を統合し,予測関数に滑らかさの制約を課す。
- 参考スコア(独自算出の注目度): 2.5628953713168685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we tackle the challenge of outlier-robust predictive modeling using highly expressive neural networks. Our approach integrates two key components: (1) a transformed trimmed loss (TTL), a computationally efficient variant of the classical trimmed loss, and (2) higher-order variation regularization (HOVR), which imposes smoothness constraints on the prediction function. While traditional robust statistics typically assume low-complexity models such as linear and kernel models, applying TTL alone to modern neural networks may fail to ensure robustness, as their high expressive power allows them to fit both inliers and outliers, even when a robust loss is used. To address this, we revisit the traditional notion of breakdown point and adapt it to the nonlinear function setting, introducing a regularization scheme via HOVR that controls the model's capacity and suppresses overfitting to outliers. We theoretically establish that our training procedure retains a high functional breakdown point, thereby ensuring robustness to outlier contamination. We develop a stochastic optimization algorithm tailored to this framework and provide a theoretical guarantee of its convergence.
- Abstract(参考訳): 本研究では,高度に表現力のあるニューラルネットワークを用いた外乱予測モデルの課題に取り組む。
提案手法は,(1)古典的トリミング損失の計算効率の良い変種である変換トリミング損失(TTL)と,(2)予測関数に滑らか性制約を課す高次変分正規化(HOVR)の2つの重要な要素を統合する。
従来のロバスト統計では、リニアモデルやカーネルモデルのような低複雑さモデルが想定されるが、TTLのみを現代のニューラルネットワークに適用しても、その高表現力により、ロバストな損失を使用した場合でも、インレーヤとアウトレーヤの両方を適合させることができるため、ロバスト性を保証することができない。
そこで本研究では,従来の分解点の概念を再検討し,非線型関数設定に適用し,HOVRによる正規化方式を導入する。
理論上, トレーニング手順は高い機能的破壊点を保持し, 外部汚染に対する堅牢性を確保する。
このフレームワークに適した確率的最適化アルゴリズムを開発し,その収束の理論的保証を提供する。
関連論文リスト
- Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent [7.248102801711294]
ディープ平衡モデル(Deep Equilibrium Models、DEQ)は、固定点を持つ暗黙のニューラルネットワークである。
我々は、非ユークリッド幾何学の仕方で定義されるミラー・ディクセントに基づく新しいDEC式を導入する。
本稿では,効率的なトレーニングと完全パラメータフリー推論が可能な計算戦略を提案する。
論文 参考訳(メタデータ) (2025-07-15T16:33:01Z) - Robust and Computation-Aware Gaussian Processes [18.264598332579748]
本稿では,近似による不確実性の原理的処理と強一般化ベイズ更新を組み合わせた新しいGPモデルであるRobust Computation-Aware Gaussian Process (RCaGP)を紹介する。
私たちのモデルは、より保守的で信頼性の高い不確実性評価を確実にします。
実験の結果、これらの課題を共同で解決することで、クリーンな設定とアウターな設定の両方で優れたパフォーマンスが得られることが確認された。
論文 参考訳(メタデータ) (2025-05-27T12:49:14Z) - Imitation Learning of MPC with Neural Networks: Error Guarantees and Sparsification [5.260346080244568]
本稿では,ニューラルネットワークを用いた模倣モデル予測制御系における近似誤差の有界化のためのフレームワークを提案する。
本稿では,この手法を用いて,性能保証付き安定型ニューラルネットワークコントローラを設計する方法について論じる。
論文 参考訳(メタデータ) (2025-01-07T10:18:37Z) - Outlier-Robust Training of Machine Learning Models [21.352210662488112]
本稿では,外部学習を用いた機械学習モデルの学習のための適応交替アルゴリズムを提案する。
アルゴリズムは、各重みを更新しながら、非ロバスト損失の重み付きバージョンを使用してモデルを反復的に訓練する。
任意の外接点(すなわち、外接点に分布的な仮定がない)を考えると、ロバストな損失核のシグマの使用は収束の領域を増大させる。
論文 参考訳(メタデータ) (2024-12-31T04:19:53Z) - Regularization for Adversarial Robust Learning [18.46110328123008]
我々は,$phi$-divergence正規化を分散ロバストなリスク関数に組み込む,対角訓練のための新しい手法を開発した。
この正規化は、元の定式化と比較して計算の顕著な改善をもたらす。
本研究では,教師付き学習,強化学習,文脈学習において提案手法の有効性を検証し,様々な攻撃に対して最先端の性能を示す。
論文 参考訳(メタデータ) (2024-08-19T03:15:41Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - HERTA: A High-Efficiency and Rigorous Training Algorithm for Unfolded Graph Neural Networks [14.139047596566485]
HERTAは、Unfolded GNNの高効率で厳格なトレーニングアルゴリズムである。
HERTAは元のモデルの最適値に収束し、アンフォールドGNNの解釈可能性を維持する。
HERTAの副産物として、正規化および正規化グラフラプラシアンに適用可能な新しいスペクトルスカラー化法を提案する。
論文 参考訳(メタデータ) (2024-03-26T23:03:06Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
DNN(Deep Neural Networks)の正規化は、一般化性の向上とオーバーフィッティングの防止に不可欠である。
制約付き最適化問題としてトレーニングプロセスのフレーミングによるDNN正規化に対する新しいアプローチを提案する。
我々はAugmented Lagrangian (SAL) 法を用いて、より柔軟で効率的な正規化機構を実現する。
論文 参考訳(メタデータ) (2023-10-25T13:55:35Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
ニューラルネットワークのような予測器のための新しいトレーニング原理であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決へのそれぞれの貢献に基づいて、個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分を補強し,有害な部分を弱めるという欲求的アプローチを実現する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Can we achieve robustness from data alone? [0.7366405857677227]
敵の訓練とその変種は、ニューラルネットワークを用いた敵の堅牢な分類を実現するための一般的な方法となっている。
そこで我々は,ロバストな分類のためのメタラーニング手法を考案し,その展開前のデータセットを原則的に最適化する。
MNIST と CIFAR-10 の実験により、我々が生成するデータセットはPGD 攻撃に対して非常に高い堅牢性を持つことが示された。
論文 参考訳(メタデータ) (2022-07-24T12:14:48Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Nonasymptotic theory for two-layer neural networks: Beyond the
bias-variance trade-off [10.182922771556742]
本稿では,ReLUアクティベーション機能を持つ2層ニューラルネットワークに対する漸近的一般化理論を提案する。
過度にパラメータ化されたランダムな特徴モデルは次元性の呪いに悩まされ、従って準最適であることを示す。
論文 参考訳(メタデータ) (2021-06-09T03:52:18Z) - Bridging the Gap Between Adversarial Robustness and Optimization Bias [28.56135898767349]
アドリアールの堅牢性はディープラーニングのオープンな課題であり、ほとんどの場合、敵対的なトレーニングを使用して対処されます。
トレードオフなしに、完全標準精度とある程度の堅牢性を両立させることが可能であることを示す。
特に、線形畳み込みモデルのロバスト性を特徴付け、フーリエ=$ell_infty$ノルムの制約を受ける攻撃に抵抗することを示す。
論文 参考訳(メタデータ) (2021-02-17T16:58:04Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
本稿では,非線形微調整に匹敵する性能を実現する事前学習モデルの線形化手法を提案する。
LQFはアーキテクチャの単純な変更、損失関数、そして一般的に分類に使用される最適化で構成されている。
論文 参考訳(メタデータ) (2020-12-21T06:40:20Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
我々は、一般的に使用される最適化アルゴリズムの幅広いクラスについて考察する。
その結果、ニューラルネットワークの収束挙動を利用することができる。
このアプローチは他の最適化アルゴリズムやネットワーク理論にも拡張できると考えています。
論文 参考訳(メタデータ) (2020-10-25T17:10:22Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
重み劣化を含む正則化器の族は、均質な活性化関数を持つネットワークに対する本質的な重みのノルムをペナルティ化するのに有効でないことを示す。
そこで我々は,ニューラルネットワークの本質的な規範を効果的に制約する改良型正規化器を提案する。
論文 参考訳(メタデータ) (2020-08-07T02:55:28Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。