論文の概要: A Bi-variant Variational Model for Diffeomorphic Image Registration with
Relaxed Jacobian Determinant Constraints
- arxiv url: http://arxiv.org/abs/2308.02393v1
- Date: Fri, 4 Aug 2023 15:47:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 12:23:28.175626
- Title: A Bi-variant Variational Model for Diffeomorphic Image Registration with
Relaxed Jacobian Determinant Constraints
- Title(参考訳): Relaxed Jacobian Determinant Constraints を用いた二変変分型画像登録モデル
- Authors: Yanyan Li, Ke Chen, Chong Chen, Jianping Zhang
- Abstract要約: 本稿では,ジャコビアン方程式のソフト制約を考慮した新しい二変微分同相画像登録モデルを提案する。
提案アルゴリズムは収束し, 正の制約は相対体積の範囲を制御でき, 精度は損なわれない。
- 参考スコア(独自算出の注目度): 11.438944084673764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffeomorphic registration has become a powerful approach for seeking a
smooth and invertible spatial transformation between two coordinate systems
which have been measured via the template and reference images. While the
pointwise volume-preserving constraint is effective for some problems, it is
too stringent for many other problems especially when the local deformations
are relatively large, because it may lead to a poor large-deformation for
enforcing local matching.In this paper, we propose a novel bi-variant
diffeomorphic image registration model with the soft constraint of Jacobian
equation, which allows local deformations to shrink and grow in a flexible
range.The Jacobian determinant of the transformation is explicitly controlled
by optimizing the relaxation function. To prevent deformation folding and
enhance the smoothness of deformation, we not only impose a positivity
constraint in optimizing the relaxation function, but also employ a regularizer
to ensure the smoothness of the relaxation function.Furthermore, the positivity
constraint ensures that is as close to one as possible, which helps to obtain a
volume-preserving transformation on average.We further analyze the existence of
the minimizer for the variational model and propose a penalty splitting method
with a multilevel strategy to solve this model. Numerical experiments show that
the proposed algorithm is convergent, and the positivity constraint can control
the range of relative volume and not compromise registration accuracy.
Moreover, the proposed model produces diffeomorphic maps for large deformation,
and achieves better performance compared to the several existing registration
models.
- Abstract(参考訳): diffeomorphic registrationはテンプレートと参照画像を用いて測定された2つの座標系間の滑らかで可逆的な空間変換を求めるための強力なアプローチとなっている。
While the pointwise volume-preserving constraint is effective for some problems, it is too stringent for many other problems especially when the local deformations are relatively large, because it may lead to a poor large-deformation for enforcing local matching.In this paper, we propose a novel bi-variant diffeomorphic image registration model with the soft constraint of Jacobian equation, which allows local deformations to shrink and grow in a flexible range.The Jacobian determinant of the transformation is explicitly controlled by optimizing the relaxation function.
To prevent deformation folding and enhance the smoothness of deformation, we not only impose a positivity constraint in optimizing the relaxation function, but also employ a regularizer to ensure the smoothness of the relaxation function.Furthermore, the positivity constraint ensures that is as close to one as possible, which helps to obtain a volume-preserving transformation on average.We further analyze the existence of the minimizer for the variational model and propose a penalty splitting method with a multilevel strategy to solve this model.
数値実験により,提案アルゴリズムは収束しており,正値制約は相対体積の範囲を制御でき,登録精度を損なわないことを示した。
さらに, 提案モデルでは, 大変形に対して二相写像を生成でき, 既存の登録モデルと比較して性能が向上した。
関連論文リスト
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - Conformalization of Sparse Generalized Linear Models [2.1485350418225244]
等角予測法は、任意の有限サンプルサイズに対して有効である$y_n+1$の信頼セットを推定する。
魅力的ではあるが、そのような集合の計算は多くの回帰問題において計算不可能である。
経路追従アルゴリズムが共形予測集合を正確に近似する方法を示す。
論文 参考訳(メタデータ) (2023-07-11T08:36:12Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
構成問題の複雑さを軽減するために,MSVR (Multi-block-probe Variance Reduced) という新しい手法を提案する。
本研究の結果は, 試料の複雑さの順序や強靭性への依存など, 様々な面で先行して改善された。
論文 参考訳(メタデータ) (2022-07-18T12:03:26Z) - Localization in 1D non-parametric latent space models from pairwise
affinities [6.982738885923206]
対の親和性から一次元トーラスにおける潜伏位置を推定する問題を考察する。
高確率でsqrtlog(n)/n$の順序の最大誤差で全ての潜伏位置を確実にローカライズする推定手順を導入する。
論文 参考訳(メタデータ) (2021-08-06T13:05:30Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
多くの応用において、部分重なり合う点集合が対応するRPMアルゴリズムに不変であるようなアルゴリズムが必要である。
まず、目的が立方体有界関数であることを示し、次に、三線型および双線型単相変換の凸エンベロープを用いて、その下界を導出する。
次に、変換変数上の分岐のみを効率よく実行するブランチ・アンド・バウンド(BnB)アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-01-19T04:24:23Z) - Ridge regression with adaptive additive rectangles and other piecewise
functional templates [0.0]
関数線形回帰モデルに対する$L_2$ベースのペナル化アルゴリズムを提案する。
提案アルゴリズムは,適切なテンプレートの近似と凸リッジのような問題の解法とを交互に行う方法を示す。
論文 参考訳(メタデータ) (2020-11-02T15:28:54Z) - MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment [77.38594866794429]
非剛体形状マッチングのための凸混合整数プログラミングの定式化。
効率的な低次元離散モデルに基づく新しい形状変形モデルを提案する。
論文 参考訳(メタデータ) (2020-02-28T09:54:06Z) - Efficient algorithms for multivariate shape-constrained convex
regression problems [9.281671380673306]
最小二乗推定器は、制約付き凸プログラミング(QP)問題を$(n+1)d$変数と少なくとも$n(n-1)$線形不等式制約で解くことで計算可能であることを証明している。
一般に非常に大規模な凸QPを解くために、我々は2つの効率的なアルゴリズムを設計する。1つは対称ガウス・シーデルに基づく乗算器の交互方向法(tt sGS-ADMM)であり、もう1つは半滑らかニュートン法(tt)によって解かれる部分プロブレムを持つ近似拡張ラグランジアン法(tt pALM)である。
論文 参考訳(メタデータ) (2020-02-26T11:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。