論文の概要: Large-scale Generative Simulation Artificial Intelligence: the Next
Hotspot in Generative AI
- arxiv url: http://arxiv.org/abs/2308.02561v1
- Date: Thu, 3 Aug 2023 02:04:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 20:09:42.511898
- Title: Large-scale Generative Simulation Artificial Intelligence: the Next
Hotspot in Generative AI
- Title(参考訳): 大規模生成シミュレーション人工知能 - 生成AIの次のホットスポット
- Authors: Qi Wang, Yanghe Feng, Jincai Huang, Yiqin Lv, Zheng Xie, Xiaoshan Gao
- Abstract要約: GenAIは、自然言語処理とコンピュータビジョンにおける大きなブレークスルーに感銘を受けた。
LS-GenAIは、GenAIが接続する次のホットスポットである。
- 参考スコア(独自算出の注目度): 12.393966743563544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of GenAI has been developed for decades. Until recently, it has
impressed us with substantial breakthroughs in natural language processing and
computer vision, actively engaging in industrial scenarios. Noticing the
practical challenges, e.g., limited learning resources, and overly dependencies
on scientific discovery empiricism, we nominate large-scale generative
simulation artificial intelligence (LS-GenAI) as the next hotspot for GenAI to
connect.
- Abstract(参考訳): GenAIの概念は何十年にもわたって発展してきた。
最近まで、自然言語処理とコンピュータビジョンにかなりのブレークスルーが与えられ、産業シナリオに積極的に取り組んできました。
例えば、限られた学習資源、科学的発見経験主義への過度な依存など、実践的な課題に気づき、我々はGenAIが接続する次のホットスポットとして、大規模な生成シミュレーション人工知能(LS-GenAI)を選定する。
関連論文リスト
- Generative artificial intelligence in dentistry: Current approaches and future challenges [0.0]
生成AI(GenAI)モデルは、複雑なモデルと対話する自然言語インターフェースを提供することによって、AIのユーザビリティギャップを橋渡しする。
歯科教育では、GenAIモデルのみを推進し、多くの疑問を解決できる機会を得た。
GenAIは、新しい薬物発見から学術論文の補助まで、歯科医学研究にも利用することができる。
論文 参考訳(メタデータ) (2024-07-24T03:33:47Z) - Prompt Smells: An Omen for Undesirable Generative AI Outputs [4.105236597768038]
我々は、GenAIモデルの適用に関する制約に対処する上で、研究コミュニティに役立つ2つの新しい概念を提案する。
まず、GenAI出力の「望ましさ」の定義と、それに影響を与える3つの要因について述べる。
第2に、Martin Fowler氏のコードの臭いからインスピレーションを得た上で、我々は「急激な臭い」の概念と、それらがGenAI出力の嫌悪性に与える影響について提案する。
論文 参考訳(メタデータ) (2024-01-23T10:10:01Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - GenAI Against Humanity: Nefarious Applications of Generative Artificial
Intelligence and Large Language Models [11.323961700172175]
本稿は、GenAIのリスクとLLMの誤用に関する厳密な研究の合成として機能する。
我々は、私たちが目にしているGenAI革命に波及した社会的影響を明らかにする。
仮想世界と現実世界の境界線はぼやけており、GenAIの悪名高いアプリケーションの結果が私たち全員に影響を与えています。
論文 参考訳(メタデータ) (2023-10-01T17:25:56Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Large Generative AI Models for Telecom: The Next Big Thing? [7.36678071967351]
大型のGenAIモデルは、自律的無線ネットワークの新しい時代を開くことを想定している。
本稿では,大規模なGenAIモデルをTelecomドメインに統合することで実現可能な機会を広げることを目的としている。
論文 参考訳(メタデータ) (2023-06-17T03:45:00Z) - An Overview on Generative AI at Scale with Edge-Cloud Computing [28.98486923400986]
生成人工知能(GenAI)は、人間が生成したものに似た新しいコンテンツを生成する。
GenAIシステムの急速な開発は、インターネット上で膨大な量の新しいデータを生み出している。
エッジクラウドコンピューティングのパラダイムを活用することで、GenAIシステムを大規模に構築することは魅力的なことです。
論文 参考訳(メタデータ) (2023-06-02T06:24:15Z) - Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI
Revolution [102.45290975132406]
神経科学は長年、人工知能(AI)の進歩の重要な要因であった
我々は,AIの進歩を加速するためには,NeuroAIの基本的な研究に投資する必要があることを示唆する。
論文 参考訳(メタデータ) (2022-10-15T17:18:37Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。