論文の概要: A Review of Change of Variable Formulas for Generative Modeling
- arxiv url: http://arxiv.org/abs/2308.02652v1
- Date: Fri, 4 Aug 2023 18:12:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 19:28:58.951288
- Title: A Review of Change of Variable Formulas for Generative Modeling
- Title(参考訳): 生成モデルのための変数式の変更に関するレビュー
- Authors: Ullrich K\"othe
- Abstract要約: 可変変数 (Change-of-variables, CoV) 公式は、ジャコビアン行列式による学習変換により、複雑な確率密度をより単純なものへ還元することができる。
CoV公式は様々なモデルタイプのために導出されてきたが、この情報は多くの異なる作品に散らばっている。
エンコーダ/デコーダアーキテクチャの統一的な視点から,28個のCoV公式を単一の場所で収集する体系的処理を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change-of-variables (CoV) formulas allow to reduce complicated probability
densities to simpler ones by a learned transformation with tractable Jacobian
determinant. They are thus powerful tools for maximum-likelihood learning,
Bayesian inference, outlier detection, model selection, etc. CoV formulas have
been derived for a large variety of model types, but this information is
scattered over many separate works. We present a systematic treatment from the
unifying perspective of encoder/decoder architectures, which collects 28 CoV
formulas in a single place, reveals interesting relationships between seemingly
diverse methods, emphasizes important distinctions that are not always clear in
the literature, and identifies surprising gaps for future research.
- Abstract(参考訳): 可変変数 (Change-of-variables, CoV) 公式は、ジャコビアン行列式による学習変換により、複雑な確率密度をより単純なものへ還元することができる。
したがって、最大様相学習、ベイズ推論、外乱検出、モデル選択などの強力なツールである。
CoV公式は様々なモデルタイプのために導出されてきたが、この情報は多くの異なる作品に散らばっている。
エンコーダ/デコーダアーキテクチャの統一的な視点から,28のCoV公式を一箇所に集め,一見多種多様なメソッド間の興味深い関係を明らかにし,文献で必ずしも明確でない重要な区別を強調し,今後の研究における驚くべきギャップを明らかにする。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Flow Factorized Representation Learning [109.51947536586677]
本稿では、異なる入力変換を定義する潜在確率パスの別個のセットを規定する生成モデルを提案する。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
論文 参考訳(メタデータ) (2023-09-22T20:15:37Z) - Learning multi-modal generative models with permutation-invariant encoders and tighter variational objectives [5.549794481031468]
マルチモーダルデータに対する深い潜伏変数モデルの開発は、機械学習研究において長年のテーマであった。
本研究では,データログ類似度を厳密に近似できる変動目標について考察する。
我々は,PoE や MoE のアプローチにおける帰納バイアスを回避するために,より柔軟なアグリゲーション手法を開発した。
論文 参考訳(メタデータ) (2023-09-01T10:32:21Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
多くのアプリケーションでは、データは異なるタイプの変数にまたがる。
最近の進歩は、バイナリ連続ケースにどのように取り組めるかを示しているが、一般的な混合変数型構造は依然として困難である。
完全混合型の変数を持つデータに対して,フレキシブルでスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:21:31Z) - Variational Interpretable Learning from Multi-view Data [2.687817337319978]
DICCAは、多視点データの共有とビュー固有のバリエーションの両方を分離するように設計されている。
実世界のデータセットにおける実証的な結果は、我々の手法がドメイン間で競合していることを示している。
論文 参考訳(メタデータ) (2022-02-28T01:56:44Z) - Invariance-based Multi-Clustering of Latent Space Embeddings for
Equivariant Learning [12.770012299379099]
より深い群不変学習を強制することにより、リー群多様体における等角写像を非共役化する手法を提案する。
実験の結果,このモデルでは,不変表現と同変表現を効果的に切り離すことができ,学習速度が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-07-25T03:27:47Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Learning Invariances for Interpretability using Supervised VAE [0.0]
我々はモデルを解釈する手段としてモデル不変性を学習する。
可変オートエンコーダ(VAE)の教師型形式を提案する。
我々は、我々のモデルと特徴属性の手法を組み合わせることで、モデルの意思決定プロセスについてよりきめ細やかな理解を得られることを示す。
論文 参考訳(メタデータ) (2020-07-15T10:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。