論文の概要: Solving Falkner-Skan type equations via Legendre and Chebyshev Neural
Blocks
- arxiv url: http://arxiv.org/abs/2308.03337v1
- Date: Mon, 7 Aug 2023 06:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 14:52:03.341922
- Title: Solving Falkner-Skan type equations via Legendre and Chebyshev Neural
Blocks
- Title(参考訳): ルジャンドルとチェビシェフによるフォルクナー・スカン型方程式の解法
- Authors: Alireza Afzal Aghaei, Kourosh Parand, Ali Nikkhah, Shakila Jaberi
- Abstract要約: 非線型Falkner-Skan方程式を解くための新しいディープラーニングアーキテクチャを提案する。
提案手法の効率は,Falkner-Skan方程式の様々な構成により評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a new deep-learning architecture for solving the non-linear
Falkner-Skan equation is proposed. Using Legendre and Chebyshev neural blocks,
this approach shows how orthogonal polynomials can be used in neural networks
to increase the approximation capability of artificial neural networks. In
addition, utilizing the mathematical properties of these functions, we overcome
the computational complexity of the backpropagation algorithm by using the
operational matrices of the derivative. The efficiency of the proposed method
is carried out by simulating various configurations of the Falkner-Skan
equation.
- Abstract(参考訳): 本稿では,非線形なfalkner-skan方程式を解くための新しいディープラーニングアーキテクチャを提案する。
LegendreとChebyshevのニューラルネットワークブロックを用いて、ニューラルネットワークの近似能力を高めるために直交多項式をどのように使用できるかを示す。
さらに,これらの関数の数学的特性を利用して,導関数の演算行列を用いて,バックプロパゲーションアルゴリズムの計算複雑性を克服する。
提案手法の効率は,falkner-skan方程式の様々な構成をシミュレートして行った。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks [0.0]
本稿では、深層ニューラルネットワークの意思決定ロジックの解明を目的とした、新しいAI技術であるフロントプロパゲーションアルゴリズムを紹介する。
積分グラディエントやシェープ値などの他の一般的な説明可能性アルゴリズムとは異なり、提案アルゴリズムはネットワークの正確で一貫した線形関数説明を抽出することができる。
公開されているベンチマークデータセットに基づいてトレーニングされた3つの異なるニューラルネットワークアーキテクチャで、正確な線形関数を提供することの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-25T14:50:23Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
我々は、統計物理学における反応拡散方程式、量子力学におけるシュル・オーディンガー方程式、同軸光学におけるヘルムホルツ方程式を一般化する。
数値解を求めるためにNPDEを離散化するために有限差分法を用いる。
多層パーセプトロン、畳み込みニューラルネットワーク、リカレントニューラルネットワークなど、ディープニューラルネットワークアーキテクチャの基本構築ブロックが生成される。
論文 参考訳(メタデータ) (2021-03-10T00:05:46Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
線形微分方程式と非線形微分方程式の両方における様々なニューラルネットワークアーキテクチャの性能と精度について検討する。
我々は、微分方程式の解を予測するために、新しいレジェンダ-ガレルキンディープニューラルネットワーク(LGNet)アルゴリズムを実装した。
論文 参考訳(メタデータ) (2020-10-24T20:25:09Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。