論文の概要: Chebyshev Spectral Neural Networks for Solving Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2407.03347v1
- Date: Thu, 6 Jun 2024 05:31:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:09:04.982034
- Title: Chebyshev Spectral Neural Networks for Solving Partial Differential Equations
- Title(参考訳): 偏微分方程式を解くためのチェビシェフスペクトルニューラルネットワーク
- Authors: Pengsong Yin, Shuo Ling, Wenjun Ying,
- Abstract要約: この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The purpose of this study is to utilize the Chebyshev spectral method neural network(CSNN) model to solve differential equations. This approach employs a single-layer neural network wherein Chebyshev spectral methods are used to construct neurons satisfying boundary conditions. The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function. This method avoids the need to solve non-sparse linear systems, making it convenient for algorithm implementation and solving high-dimensional problems. The unique sampling method and neuron architecture significantly enhance the training efficiency and accuracy of the neural network. Furthermore, multiple networks enables the Chebyshev spectral method to handle equations on more complex domains. The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
- Abstract(参考訳): 本研究の目的は,Chebyshevスペクトル法ニューラルネットワーク(CSNN)モデルを用いて微分方程式を解くことである。
このアプローチでは、チェビシェフスペクトル法を用いて境界条件を満たすニューロンを構成する単一層ニューラルネットワークを用いる。
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
この方法では,非スパース線形系を解く必要がなく,アルゴリズムの実装や高次元問題の解決に便利である。
ユニークなサンプリング法とニューロンアーキテクチャは、ニューラルネットワークのトレーニング効率と精度を著しく向上させる。
さらに、複数のネットワークがチェビシェフスペクトル法によりより複雑な領域の方程式を処理できる。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
時間差分方程式を解くために, 革新的物理モデル駆動ニューラルネットワーク (PMNN) 法を提案する。
ディープニューラルネットワーク(DNN)と分数微分の近似を効果的に組み合わせる。
論文 参考訳(メタデータ) (2023-10-07T12:43:32Z) - Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural
Networks [4.604003661048267]
物理情報ニューラルネットワーク(PINN)は微分方程式の解法として有望である。
この重要な問題に光を当てる包括的な理論的枠組みを提案する。
我々は、PINN予測を大容量データセット限界で支配する積分微分方程式を導出する。
論文 参考訳(メタデータ) (2023-07-12T18:00:02Z) - Neuro-symbolic partial differential equation solver [0.0]
本稿では,科学計算における数値離散化からメッシュフリーなニューロシンボリック偏微分方程式解法を開発するための戦略を提案する。
この戦略は、解関数と微分演算子のモデルのニューラルネットワークサロゲートモデルを効率的に訓練するために使用できるという点でユニークなものである。
論文 参考訳(メタデータ) (2022-10-25T22:56:43Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
論文 参考訳(メタデータ) (2020-07-21T23:36:36Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
我々は、ニューラルネットワークの性能を評価するために、正確な解の知識を必要としない特定の損失関数を証明した。
ニューラルネットワークは、トレーニング領域内での継続的ソリューションの近似に熟練していることが示されている。
ユーザフレンドリで適応可能なオープンソースコード(ODE$mathcalN$)がGitHubで提供されている。
論文 参考訳(メタデータ) (2020-05-28T15:34:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。