Efficient Transfer Learning via Causal Bounds
- URL: http://arxiv.org/abs/2308.03572v5
- Date: Wed, 09 Jul 2025 05:37:07 GMT
- Title: Efficient Transfer Learning via Causal Bounds
- Authors: Xueping Gong, Wei You, Jiheng Zhang,
- Abstract summary: We analyze how causal side-information accelerates online learning, and experiments on data reduction.<n>Our analysis precisely characterizes when how causal side-information accelerates online learning, and experiments on data reduction.
- Score: 8.981637739384674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning seeks to accelerate sequential decision-making by leveraging offline data from related agents. However, data from heterogeneous sources that differ in observed features, distributions, or unobserved confounders often render causal effects non-identifiable and bias naive estimators. We address this by forming ambiguity sets of structural causal models defined via integral constraints on their joint densities. Optimizing any causal effect over these sets leads to generally non-convex programs whose solutions tightly bound the range of possible effects under heterogeneity or confounding. To solve these programs efficiently, we develop a hit-and-run sampler that explores the entire ambiguity set and, when paired with a local optimization oracle, produces causal bound estimates that converge almost surely to the true limits. We further accommodate estimation error by relaxing the ambiguity set and exploit the Lipschitz continuity of causal effects to establish precise error propagation guarantees. These causal bounds are then embedded into bandit algorithms via arm elimination and truncated UCB indices, yielding optimal gap-dependent and minimax regret bounds. To handle estimation error, we also develop a safe algorithm for incorporating noisy causal bounds. In the contextual-bandit setting with function approximation, our method uses causal bounds to prune both the function class and the per-context action set, achieving matching upper and lower regret bounds with only logarithmic dependence on function-class complexity. Our analysis precisely characterizes when and how causal side-information accelerates online learning, and experiments on synthetic benchmarks confirm substantial regret reductions in data-scarce or confounded regimes.
Related papers
- Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
This paper examines a crucial subset of problems where both the objective and constraint functions are weakly convex.
Existing methods often face limitations, including slow convergence rates or reliance on double-loop designs.
We introduce a novel single-loop penalty-based algorithm to overcome these challenges.
arXiv Detail & Related papers (2025-04-21T17:15:48Z) - Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
We present the first theoretical error decomposition analysis of methods such as perplexity and self-consistency.<n>Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function.<n>We propose Reasoning-Pruning Perplexity Consistency (RPC), which integrates perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths.
arXiv Detail & Related papers (2025-02-01T18:09:49Z) - The Exploration of Error Bounds in Classification with Noisy Labels [7.657250843344973]
In this paper, we focus on the error bounds of excess risks for classification problems with noisy labels within deep learning frameworks.<n>We derive error bounds for the excess risk, decomposing it into statistical error and approximation error.<n>Under the low-dimensional manifold hypothesis, we further refine the approximation error to mitigate the impact of high-dimensional input spaces.
arXiv Detail & Related papers (2025-01-25T10:06:50Z) - Efficient Differentiable Discovery of Causal Order [14.980926991441342]
Intersort is a score-based method to discover causal order of variables.
We reformulate Intersort using differentiable sorting and ranking techniques.
Our work opens the door to efficiently incorporating regularization for causal order into the training of differentiable models.
arXiv Detail & Related papers (2024-10-11T13:11:55Z) - LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
An adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown to the learner.
We present a robust online rounds optimization framework, where an adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown.
arXiv Detail & Related papers (2024-08-12T17:08:31Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
We propose a kernel-based doubly robust causal learning estimator for continuous treatments.
We show that its oracle form is a consistent approximation of the influence function.
We then provide a comprehensive convergence analysis in terms of the mean square error.
arXiv Detail & Related papers (2023-09-22T12:18:53Z) - Interactive Graph Convolutional Filtering [79.34979767405979]
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
arXiv Detail & Related papers (2023-09-04T09:02:31Z) - Non-stationary Delayed Combinatorial Semi-Bandit with Causally Related
Rewards [7.0997346625024]
We formalize a non-stationary and delayed semi-bandit problem with causally related rewards.
We develop a policy that learns the structural dependencies from delayed feedback and utilizes that to optimize the decision-making.
We evaluate our method via numerical analysis using synthetic and real-world datasets to detect the regions that contribute the most to the spread of Covid-19 in Italy.
arXiv Detail & Related papers (2023-07-18T09:22:33Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Approximate Causal Effect Identification under Weak Confounding [13.552959043816482]
We propose an efficient linear program to derive the upper and lower bounds of the causal effect.
We show that our bounds are consistent in the sense that as the entropy of unobserved confounders goes to zero, the gap between the upper and lower bound vanishes.
arXiv Detail & Related papers (2023-06-22T23:35:49Z) - dugMatting: Decomposed-Uncertainty-Guided Matting [83.71273621169404]
We propose a decomposed-uncertainty-guided matting algorithm, which explores the explicitly decomposed uncertainties to efficiently and effectively improve the results.
The proposed matting framework relieves the requirement for users to determine the interaction areas by using simple and efficient labeling.
arXiv Detail & Related papers (2023-06-02T11:19:50Z) - Federated Learning for Heterogeneous Bandits with Unobserved Contexts [0.0]
We study the problem of federated multi-arm contextual bandits with unknown contexts.
We propose an elimination-based algorithm and prove the regret bound for linearly parametrized reward functions.
arXiv Detail & Related papers (2023-03-29T22:06:24Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
We develop a Chance Constraint Learning (CCL) methodology with a focus on mixed-integer linear optimization problems.
CCL makes use of linearizable machine learning models to estimate conditional quantiles of the learned variables.
An open-access software has been developed to be used by practitioners.
arXiv Detail & Related papers (2022-07-08T11:54:39Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
Federated learning is a prime candidate for distributed machine learning at the network edge.
Existing algorithms face issues with slow convergence and/or robustness of performance.
We propose a contextual aggregation scheme that achieves the optimal context-dependent bound on loss reduction.
arXiv Detail & Related papers (2022-03-23T21:42:31Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
Causal inference from observational datasets often relies on measuring and adjusting for covariates.
We show that this robust optimization approach can extend a wide range of causal adjustment methods to perform partial identification.
Across synthetic and real datasets, we find that this approach provides ATE bounds with a higher coverage probability than existing methods.
arXiv Detail & Related papers (2022-02-22T04:24:26Z) - Fusion and Orthogonal Projection for Improved Face-Voice Association [15.938463726577128]
We study the problem of learning association between face and voice.
We propose a light-weight, plug-and-play mechanism that exploits the complementary cues in both modalities to form enriched fused embeddings.
arXiv Detail & Related papers (2021-12-20T12:33:33Z) - Convergence Rates for Learning Linear Operators from Noisy Data [6.4423565043274795]
We study the inverse problem of learning a linear operator on a space from its noisy pointwise evaluations on random input data.
We establish posterior contraction rates with respect to a family of Bochner norms as the number of data tend to infinity lower on the estimation error.
These convergence rates highlight and quantify the difficulty of learning linear operators in comparison with the learning of bounded or compact ones.
arXiv Detail & Related papers (2021-08-27T22:09:53Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
We introduce an algorithm that efficiently learns policies in non-stationary environments.
It analyzes a possibly infinite stream of data and computes, in real-time, high-confidence change-point detection statistics.
We show that (i) this algorithm minimizes the delay until unforeseen changes to a context are detected, thereby allowing for rapid responses.
arXiv Detail & Related papers (2021-05-20T01:57:52Z) - Experimental Design for Regret Minimization in Linear Bandits [19.8309784360219]
We propose a novel design-based algorithm to minimize regret in online linear and bandits.
We provide state-of-the-art finite time regret guarantees and show that our algorithm can be applied in both the bandit and semi-bandit feedback regime.
arXiv Detail & Related papers (2020-11-01T17:59:19Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z) - Adaptive Discretization for Model-Based Reinforcement Learning [10.21634042036049]
We introduce the technique of adaptive discretization to design an efficient model-based episodic reinforcement learning algorithm.
Our algorithm is based on optimistic one-step value iteration extended to maintain an adaptive discretization of the space.
arXiv Detail & Related papers (2020-07-01T19:36:46Z) - A Class of Algorithms for General Instrumental Variable Models [29.558215059892206]
Causal treatment effect estimation is a key problem that arises in a variety of real-world settings.
We provide a method for causal effect bounding in continuous distributions.
arXiv Detail & Related papers (2020-06-11T12:32:24Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.