論文の概要: Labeling without Seeing? Blind Annotation for Privacy-Preserving Entity Resolution
- arxiv url: http://arxiv.org/abs/2308.03734v2
- Date: Wed, 04 Jun 2025 07:36:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:13.763247
- Title: Labeling without Seeing? Blind Annotation for Privacy-Preserving Entity Resolution
- Title(参考訳): 表示なしラベリング : プライバシ保護エンティティ解決のための盲点アノテーション
- Authors: Yixiang Yao, Weizhao Jin, Srivatsan Ravi,
- Abstract要約: 本稿では,同相暗号に基づく新しいブラインドアノテーションプロトコルを提案する。
実地真実と比較して,我々のプロトコルが90%以上達成されていることを示す。
- 参考スコア(独自算出の注目度): 1.6385815610837167
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The entity resolution problem requires finding pairs across datasets that belong to different owners but refer to the same entity in the real world. To train and evaluate solutions (either rule-based or machine-learning-based) to the entity resolution problem, generating a ground truth dataset with entity pairs or clusters is needed. However, such a data annotation process involves humans as domain oracles to review the plaintext data for all candidate record pairs from different parties, which inevitably infringes the privacy of data owners, especially in privacy-sensitive cases like medical records. To the best of our knowledge, there is no prior work on privacy-preserving ground truth dataset generation, especially in the domain of entity resolution. We propose a novel blind annotation protocol based on homomorphic encryption that allows domain oracles to collaboratively label ground truths without sharing data in plaintext with other parties. In addition, we design a domain-specific easy-to-use language that hides the sophisticated underlying homomorphic encryption layer. Rigorous proof of the privacy guarantee is provided and our empirical experiments via an annotation simulator indicate the feasibility of our privacy-preserving protocol (f-measure on average achieves more than 90\% compared with the real ground truths).
- Abstract(参考訳): エンティティ解決問題は、異なる所有者に属するが、現実世界で同じエンティティを参照するデータセットをまたいだペアを見つける必要がある。
エンティティ解決問題に対するソリューション(ルールベースまたは機械学習ベース)のトレーニングと評価を行うには、エンティティペアまたはクラスタによる基底真理データセットを生成する必要がある。
しかし、このようなデータアノテーションのプロセスでは、ドメインの託主のような人間が、異なるパーティのすべての候補レコードペアのプレーンテキストデータをレビューすることになり、データ所有者のプライバシーを必然的に侵害する。
私たちの知る限りでは、プライバシ保護基盤真理データセット生成、特にエンティティ解決の領域における事前の作業はありません。
本稿では,同型暗号に基づく新たなブラインドアノテーションプロトコルを提案する。
さらに,基礎となるホモモルフィック暗号層を隠蔽する,ドメイン固有の使いやすい言語を設計する。
プライバシ保証の厳密な証明が提供され, シミュレータによる実証実験により, プライバシ保護プロトコルの実現可能性を示す。
関連論文リスト
- Enforcing Demographic Coherence: A Harms Aware Framework for Reasoning about Private Data Release [14.939460540040459]
データプライバシに必要であると主張するプライバシ攻撃にインスパイアされた、人口統計コヒーレンスを導入します。
我々のフレームワークは信頼性評価予測に重点を置いており、ほぼすべてのデータインフォームドプロセスから蒸留することができる。
差分的にプライベートなデータリリースはすべて、人口統計学的にコヒーレントであること、および、差分的にプライベートではない人口統計学的にコヒーレントなアルゴリズムがあることを実証する。
論文 参考訳(メタデータ) (2025-02-04T20:42:30Z) - SemDP: Semantic-level Differential Privacy Protection for Face Datasets [4.694266441149191]
顔データセット全体に適用可能な意味レベル差分プライバシー保護スキームを提案する。
まず、顔データセットから意味情報を抽出して属性データベースを構築し、その属性データを隠蔽するために差動摂動を適用し、最後に画像モデルを用いて保護された顔データセットを生成する。
論文 参考訳(メタデータ) (2024-12-20T06:00:59Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - Graph Learning Across Data Silos [10.448384704100684]
本稿では,スムーズなグラフ信号からグラフトポロジを推定する問題を考える。
データは分散クライアントにあり、プライバシー上の懸念などの要因により、ローカルクライアントを去ることは禁じられている。
本稿では,各ローカルクライアントに対してパーソナライズされたグラフと,全クライアントに対して単一のコンセンサスグラフを共同で学習する,自動重み付き多重グラフ学習モデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T02:14:57Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Differentially Private Multi-Party Data Release for Linear Regression [40.66319371232736]
Differentially Private (DP) データリリースは、データ対象のプライバシを損なうことなくデータを広める、有望なテクニックである。
本稿では、異なる利害関係者が同じデータ対象グループに属する不整合な属性セットを所有するマルチパーティ設定に焦点を当てる。
提案手法は,データセットサイズが増大する最適(プライベートでない)解に収束することを示す。
論文 参考訳(メタデータ) (2022-06-16T08:32:17Z) - Uncertainty-Autoencoder-Based Privacy and Utility Preserving Data Type
Conscious Transformation [3.7315964084413173]
プライバシ・ユーティリティのトレードオフ問題に対処する逆学習フレームワークを2つの条件で提案する。
データタイプの無知な条件下では、プライバシメカニズムは、正確に1つのクラスを表す、カテゴリ機能の1ホットエンコーディングを提供する。
データ型認識条件下では、分類変数は各クラスごとに1つのスコアの集合で表される。
論文 参考訳(メタデータ) (2022-05-04T08:40:15Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。