論文の概要: A sparse coding approach to inverse problems with application to
microwave tomography imaging
- arxiv url: http://arxiv.org/abs/2308.03818v1
- Date: Mon, 7 Aug 2023 14:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 15:36:52.779627
- Title: A sparse coding approach to inverse problems with application to
microwave tomography imaging
- Title(参考訳): 逆問題に対するスパース符号化法とマイクロ波トモグラフィーイメージングへの応用
- Authors: Cesar F. Caiafa, Ramiro M. Irastorza
- Abstract要約: 哺乳類の視覚系に触発された自然画像に対して,現実的でコンパクトで効果的な生成モデルを提案する。
これにより、大量の画像の集合上でモデルをトレーニングすることで、不測の線形逆問題に対処することができる。
マイクロ波トモグラフィー画像における非線形および不適切な問題に対するスパース符号化の適用を拡大する。
- 参考スコア(独自算出の注目度): 2.792030485253753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse imaging problems that are ill-posed can be encountered across
multiple domains of science and technology, ranging from medical diagnosis to
astronomical studies. To reconstruct images from incomplete and distorted data,
it is necessary to create algorithms that can take into account both, the
physical mechanisms responsible for generating these measurements and the
intrinsic characteristics of the images being analyzed. In this work, the
sparse representation of images is reviewed, which is a realistic, compact and
effective generative model for natural images inspired by the visual system of
mammals. It enables us to address ill-posed linear inverse problems by training
the model on a vast collection of images. Moreover, we extend the application
of sparse coding to solve the non-linear and ill-posed problem in microwave
tomography imaging, which could lead to a significant improvement of the
state-of-the-arts algorithms.
- Abstract(参考訳): 逆画像問題は、医学的診断から天文学的な研究まで、科学と技術の複数の領域で発生することがある。
不完全かつ歪んだデータから画像を再構成するためには、これらの測定を生成する物理メカニズムと解析対象の画像の固有の特性の両方を考慮に入れたアルゴリズムを作成する必要がある。
本研究では,哺乳類の視覚系に触発された自然画像に対する,現実的でコンパクトで効果的な生成モデルである画像のスパース表現について概説する。
膨大な画像群でモデルをトレーニングすることで,不適切な線形逆問題に対処することができる。
さらに,マイクロ波トモグラフィー画像における非線形および不適切な問題に対するスパース符号化の適用を拡大し,最先端のアルゴリズムを著しく改善する可能性がある。
関連論文リスト
- Diff-FMT: Diffusion Models for Fluorescence Molecular Tomography [16.950699640321936]
拡散確率モデル(DDPM)に基づくFMT再構成手法を提案する。
ステップバイステップの確率サンプリング機構により、画像のきめ細かい再構築を実現し、画像詳細の喪失などの問題を回避する。
Diff-FMTは大規模データセットに頼らずに高解像度の再構成画像が得られることを示す。
論文 参考訳(メタデータ) (2024-10-09T10:41:31Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Deep Learning Approach for Hyperspectral Image Demosaicking, Spectral
Correction and High-resolution RGB Reconstruction [3.0478210530038443]
教師付き学習手法を用いたハイパースペクトル画像のスナップショット化のための深層学習に基づく画像復号アルゴリズムを提案する。
医用画像が公開されていないため,既存の医用画像データセットからのスナップショット画像をシミュレートする合成画像生成手法が提案されている。
得られたデシック画像は定量的かつ質的に評価され、画像品質の明確な改善が示される。
論文 参考訳(メタデータ) (2021-09-03T09:50:03Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z) - Real-time sparse-sampled Ptychographic imaging through deep neural
networks [3.3351024234383946]
データの取得と解析の両方に制約を課す複雑な逆問題の解法により、画像再構成を実現する。
本稿では,深部畳み込みニューラルネットワークに基づく画像再構成問題の解法として,PtychoNNを提案する。
論文 参考訳(メタデータ) (2020-04-15T23:43:17Z) - Deep Learning-Based Solvability of Underdetermined Inverse Problems in
Medical Imaging [3.2214522506924093]
本研究は,ディープラーニングに適したトレーニングデータの構造に関する因果関係を学習し,高度に過小評価された逆問題を解決することに焦点を当てた。
医用画像における未決定線形システムの解法のほとんどは非線形である。
さらに、トレーニングデータから所望の再構成マップを学習可能かどうか、および過小判定システムから分析する。
論文 参考訳(メタデータ) (2020-01-06T07:52:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。