Probabilistic Phase Labeling and Lattice Refinement for Autonomous
Material Research
- URL: http://arxiv.org/abs/2308.07897v1
- Date: Tue, 15 Aug 2023 17:38:38 GMT
- Title: Probabilistic Phase Labeling and Lattice Refinement for Autonomous
Material Research
- Authors: Ming-Chiang Chang, Sebastian Ament, Maximilian Amsler, Duncan R.
Sutherland, Lan Zhou, John M. Gregoire, Carla P. Gomes, R. Bruce van Dover,
Michael O. Thompson
- Abstract summary: We present CrystalShift, an efficient algorithm for probabilistic XRD phase labeling.
We demonstrate that CrystalShift provides robust probability, outperforming existing methods on synthetic and experimental datasets.
In addition to efficient phase-mapping, CrystalShift offers quantitative insights into materials' structural parameters, which facilitate expert evaluation and AI-based modeling of the phase space.
- Score: 20.78180998995325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: X-ray diffraction (XRD) is an essential technique to determine a material's
crystal structure in high-throughput experimentation, and has recently been
incorporated in artificially intelligent agents in autonomous scientific
discovery processes. However, rapid, automated and reliable analysis method of
XRD data matching the incoming data rate remains a major challenge. To address
these issues, we present CrystalShift, an efficient algorithm for probabilistic
XRD phase labeling that employs symmetry-constrained pseudo-refinement
optimization, best-first tree search, and Bayesian model comparison to estimate
probabilities for phase combinations without requiring phase space information
or training. We demonstrate that CrystalShift provides robust probability
estimates, outperforming existing methods on synthetic and experimental
datasets, and can be readily integrated into high-throughput experimental
workflows. In addition to efficient phase-mapping, CrystalShift offers
quantitative insights into materials' structural parameters, which facilitate
both expert evaluation and AI-based modeling of the phase space, ultimately
accelerating materials identification and discovery.
Related papers
- Discovering symbolic expressions with parallelized tree search [59.92040079807524]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.
Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity.
We introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Robust retrieval of material chemical states in X-ray microspectroscopy [10.621361408885765]
We propose a novel data formulation model for X-ray microspectroscopy and develop a dedicated unmixing framework to solve this problem.
Our framework can accurately identify and characterize chemical states in complex and heterogeneous samples, even under challenging conditions.
arXiv Detail & Related papers (2023-08-08T12:17:02Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Neural networks trained on synthetically generated crystals can extract
structural information from ICSD powder X-ray diffractograms [0.6906005491572401]
Machine learning techniques have successfully been used to extract structural information from powder X-ray diffractograms.
We propose an alternative approach of generating synthetic crystals with random coordinates by using the symmetry operations of each space group.
We demonstrate online training of deep ResNet-like models on up to a few million unique on-the-fly generated synthetic diffractograms per hour.
arXiv Detail & Related papers (2023-03-21T09:37:29Z) - Exploring Supervised Machine Learning for Multi-Phase Identification and
Quantification from Powder X-Ray Diffraction Spectra [1.0660480034605242]
Powder X-ray diffraction analysis is a critical component of materials characterization methodologies.
Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra.
Here, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification.
arXiv Detail & Related papers (2022-11-16T00:36:13Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - On Open and Strong-Scaling Tools for Atom Probe Crystallography:
High-Throughput Methods for Indexing Crystal Structure and Orientation [0.0]
Volumetric crystal structure indexing and orientation mapping are key data processing steps for quantitative studies of spatial correlations.
For atom probe tomography (APT) experiments, the strategy of making comparisons between measured and analytically computed patterns is less robust because many APT datasets may contain substantial noise.
We report how this enables the development of an open-source software tool for strong-scaling and automated identifying of crystal structure and mapping crystal orientation in nanocrystalline APT datasets with multiple phases.
arXiv Detail & Related papers (2020-09-01T22:50:03Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.