論文の概要: Accelerating LLM Inference with Staged Speculative Decoding
- arxiv url: http://arxiv.org/abs/2308.04623v1
- Date: Tue, 8 Aug 2023 23:29:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-10 15:40:28.610826
- Title: Accelerating LLM Inference with Staged Speculative Decoding
- Title(参考訳): staged speculative decodingを用いたllm推論の高速化
- Authors: Benjamin Spector and Chris Re
- Abstract要約: そこで我々は,小型デバイス上でのLDM推論を高速化する新しいアルゴリズム,ステージド・投機復号法を提案する。
我々は 762M パラメータ GPT-2-L モデルを用いて,シングルバッチデコーディングのレイテンシを 3.16 倍に削減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances with large language models (LLM) illustrate their diverse
capabilities. We propose a novel algorithm, staged speculative decoding, to
accelerate LLM inference in small-batch, on-device scenarios. We address the
low arithmetic intensity of small-batch inference by improving upon previous
work in speculative decoding. First, we restructure the speculative batch as a
tree, which reduces generation costs and increases the expected tokens per
batch. Second, we add a second stage of speculative decoding. Taken together,
we reduce single-batch decoding latency by 3.16x with a 762M parameter GPT-2-L
model while perfectly preserving output quality.
- Abstract(参考訳): 大規模言語モデル(LLM)による最近の進歩は、その多様な能力を示している。
そこで我々は,小型デバイス上でのLDM推論を高速化する新しいアルゴリズム,ステージド投機デコーディングを提案する。
我々は、投機的復号法における従来の作業を改善することで、小バッチ推論の算術強度を低くする。
まず、投機的バッチをツリーとして再構成し、生成コストを削減し、バッチ当たりの期待トークンを増やす。
次に、投機的復号化の第2段階を追加します。
出力品質を完全に保ちながら、762MパラメータGPT-2-Lモデルを用いて、単一バッチ復号遅延を3.16倍削減する。
関連論文リスト
- Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
我々は,デコーディングのメモリバウンドネスに対処するために,プログレッシブ・ミックス・プレシジョン・デコーディング(PMPD)を導入する。
PMPDはfp16モデルの行列ベクトル乗算において1.4$-$12.2$times$ Speedupを達成する。
我々の手法は、fp16モデルよりも3.8$-$8.0$times$、均一量子化アプローチよりも1.54$times$のスループット向上をもたらす。
論文 参考訳(メタデータ) (2024-10-17T11:46:33Z) - $\mathbb{USCD}$: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding [64.00025564372095]
大規模言語モデル(LLM)は、コード生成において顕著な能力を示している。
幻覚の影響(例えば出力ノイズ)は、LLMが1パスで高品質なコードを生成するのを難しくする。
単純かつ効果的なtextbfuncertainty-aware textbf select textbfcontrastive textbfdecodingを提案する。
論文 参考訳(メタデータ) (2024-09-09T02:07:41Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding [11.832919020149891]
本研究の目的は,数十億のパラメータを持つ大規模言語モデル(LLM)の推論速度を高速化することである。
textbfSmart textbfParallel textbfAuto-textbfCorrect dtextbfEcoding (SPACE)を提案する。
論文 参考訳(メタデータ) (2024-02-19T03:39:10Z) - Break the Sequential Dependency of LLM Inference Using Lookahead
Decoding [27.87483106859749]
Lookahead decodingは、大規模言語モデル(LLM)のための正確な並列デコーディングアルゴリズムである。
実装により,MT-benchでは1.8倍,コード補完タスクでは4倍まで高速に自動回帰復号を行うことができる。
論文 参考訳(メタデータ) (2024-02-03T06:37:50Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - The Synergy of Speculative Decoding and Batching in Serving Large
Language Models [3.3849225405083336]
本稿では,異なるバッチサイズに対して最適な投機長を選択する新しい投機的復号法を提案する。
提案手法は, 提案手法により, 固定された投機長を持つ, 最先端の投機復号方式と同等以上の性能が得られることを示す。
論文 参考訳(メタデータ) (2023-10-28T20:36:36Z) - Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes [59.55193427277134]
Reed-Muller (RM) 符号は、一般的なバイナリインプットメモリレス対称チャネルの容量を達成する。
RM符号は制限されたレートのみを許容する。
効率的なデコーダは、RM符号に対して有限長で利用可能である。
論文 参考訳(メタデータ) (2023-01-16T04:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。