論文の概要: Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
- arxiv url: http://arxiv.org/abs/2308.06838v6
- Date: Sun, 31 Mar 2024 22:55:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 19:58:13.807322
- Title: Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
- Title(参考訳): WeisfeilerとLehman Go Paths:パスコンプレックスによるトポロジ的特徴の学習
- Authors: Quang Truong, Peter Chin,
- Abstract要約: グラフニューラルネットワーク(GNN)は理論上、1-Weisfeiler-Lehmanテストによって拘束される。
本研究では, トポロジ的メッセージパッシング過程において, グラフ内の単純な経路に着目し, 新たな視点を示す。
- 参考スコア(独自算出の注目度): 4.23480641508611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs), despite achieving remarkable performance across different tasks, are theoretically bounded by the 1-Weisfeiler-Lehman test, resulting in limitations in terms of graph expressivity. Even though prior works on topological higher-order GNNs overcome that boundary, these models often depend on assumptions about sub-structures of graphs. Specifically, topological GNNs leverage the prevalence of cliques, cycles, and rings to enhance the message-passing procedure. Our study presents a novel perspective by focusing on simple paths within graphs during the topological message-passing process, thus liberating the model from restrictive inductive biases. We prove that by lifting graphs to path complexes, our model can generalize the existing works on topology while inheriting several theoretical results on simplicial complexes and regular cell complexes. Without making prior assumptions about graph sub-structures, our method outperforms earlier works in other topological domains and achieves state-of-the-art results on various benchmarks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、異なるタスクにまたがる顕著な性能を達成しているが、理論上は1-Weisfeiler-Lehmanテストによって拘束され、グラフ表現性の限界が生じる。
トポロジカル高次GNNに関する以前の研究はその境界を克服したが、これらのモデルはグラフのサブ構造に関する仮定に依存することが多い。
具体的には、トポロジカルGNNは、クリフ、サイクル、リングの頻度を利用してメッセージパッシングの手順を強化する。
本研究は,トポロジカルメッセージパッシング過程におけるグラフ内の単純な経路に着目し,制約的帰納的バイアスからモデルを解放することで,新たな視点を示す。
グラフをパス複体に持ち上げることで、我々のモデルは、単純複体および正規セル複体に関するいくつかの理論的結果を継承しながら、トポロジーに関する既存の研究を一般化することができることを証明した。
グラフのサブ構造に関する事前の仮定がなければ、この手法は他のトポロジ的領域での先行研究よりも優れ、様々なベンチマークで最先端の結果が得られます。
関連論文リスト
- Generalization of Graph Neural Networks through the Lens of Homomorphism [7.223313563198697]
本稿では,グラフ・ニューラル・ネットワーク(GNN)の一般化を,グラフ準同型のエントロピー解析という新たな視点で研究することを提案する。
グラフ準同型と情報理論測度を結びつけることにより、グラフ分類とノード分類の両方の一般化境界を導出する。
これらの境界は、パス、サイクル、傾きなど、様々なグラフ構造に固有の微妙さを捉えることができる。
論文 参考訳(メタデータ) (2024-03-10T03:51:59Z) - Homomorphism Counts for Graph Neural Networks: All About That Basis [8.25219440625445]
我々は、よりきめ細かいアプローチを論じ、対象パターンの基底''にすべての構造の準同型数を含む。
これにより計算複雑性の面で追加のオーバーヘッドを発生させずに、より表現力のあるアーキテクチャが得られる。
論文 参考訳(メタデータ) (2024-02-13T16:57:06Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
グラフ畳み込みネットワーク(GCN)は近年,グラフ構造化データの学習において大きな成功を収めている。
スケーラビリティ問題に対処するため、Gsの学習におけるメモリと計算コストを削減するため、グラフトポロジサンプリングが提案されている。
本稿では,3層GCNのトレーニング(最大)におけるグラフトポロジサンプリングの最初の理論的正当性について述べる。
論文 参考訳(メタデータ) (2022-07-07T21:25:55Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
グラフのトポロジ特性を学習するグラフ畳み込みネットワークのための新しいフレームワークを提案する。
本手法の設計原理は制約対象関数の最適化に基づいている。
骨格に基づく行動認識の課題に対して行った実験は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2021-12-06T19:43:26Z) - Topological Relational Learning on Graphs [2.4692806302088868]
グラフニューラルネットワーク(GNN)は、グラフ分類と表現学習のための強力なツールとして登場した。
本稿では,GNNに高階グラフ情報を統合可能な新しいトポロジカルリレーショナル推論(TRI)を提案する。
新しいTRI-GNNは、6つの7つのグラフで14の最先端のベースラインを上回り、摂動に対して高い堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2021-10-29T04:03:27Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Topological Regularization for Graph Neural Networks Augmentation [12.190045459064413]
本稿では,トポロジカル正則化に基づくグラフノードの機能拡張手法を提案する。
我々は,モデルの有効性を証明するために,多数のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-04-03T01:37:44Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。