論文の概要: Shape-Graph Matching Network (SGM-net): Registration for Statistical
Shape Analysis
- arxiv url: http://arxiv.org/abs/2308.06869v1
- Date: Mon, 14 Aug 2023 00:42:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 14:56:36.682575
- Title: Shape-Graph Matching Network (SGM-net): Registration for Statistical
Shape Analysis
- Title(参考訳): 形状グラフマッチングネットワーク(SGM-net):統計的形状解析のための登録
- Authors: Shenyuan Liang, Mauricio Pamplona Segundo, Sathyanarayanan N. Aakur,
Sudeep Sarkar, Anuj Srivastava
- Abstract要約: 本稿では,形状グラフと呼ばれるデータオブジェクトの形状の統計的解析に着目する。
ここでの重要なニーズは、オブジェクト間のポイント(ノードからノード、エッジからエッジ)の制限された登録である。
本稿では,ニューラルネットアーキテクチャを用いて,この登録問題に対処する。
- 参考スコア(独自算出の注目度): 20.58923754314197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the statistical analysis of shapes of data objects
called shape graphs, a set of nodes connected by articulated curves with
arbitrary shapes. A critical need here is a constrained registration of points
(nodes to nodes, edges to edges) across objects. This, in turn, requires
optimization over the permutation group, made challenging by differences in
nodes (in terms of numbers, locations) and edges (in terms of shapes,
placements, and sizes) across objects. This paper tackles this registration
problem using a novel neural-network architecture and involves an unsupervised
loss function developed using the elastic shape metric for curves. This
architecture results in (1) state-of-the-art matching performance and (2) an
order of magnitude reduction in the computational cost relative to baseline
approaches. We demonstrate the effectiveness of the proposed approach using
both simulated data and real-world 2D and 3D shape graphs. Code and data will
be made publicly available after review to foster research.
- Abstract(参考訳): 本稿では,任意の形状の曲線で連結されたノードの集合である形状グラフと呼ばれるデータオブジェクトの形状の統計的解析に着目する。
ここでの重要なニーズは、オブジェクト間のポイント(ノード、エッジ、エッジ)の制限された登録です。
これは順に、置換群に対する最適化を必要とし、(数、位置の点で)ノードと(形状、配置、サイズの観点から)エッジの違いによって困難になる。
本稿では,新しいニューラルネットワークアーキテクチャを用いてこの登録問題に対処し,曲線の弾性形状メトリックを用いた教師なし損失関数を提案する。
このアーキテクチャは(1)最先端のマッチング性能と(2)ベースラインアプローチに対する計算コストの桁違いの削減をもたらす。
シミュレーションデータと実世界の2次元および3次元形状グラフの両方を用いて,提案手法の有効性を示す。
コードとデータはレビュー後に公開され、研究が促進される。
関連論文リスト
- BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - A fast topological approach for predicting anomalies in time-varying
graphs [0.0]
トポロジカルデータ解析(TDA)からの永続化ダイアグラム(PD)は、点間距離が明確に定義されたデータ形状記述法として人気がある。
本稿では,グラフデータから形状情報を抽出する計算効率の良いフレームワークを提案する。
実際のデータアプリケーションでは、暗号取引ネットワークの異常な価格予測において、我々のアプローチは最大で22%上昇する。
論文 参考訳(メタデータ) (2023-05-11T01:54:45Z) - kNN-Res: Residual Neural Network with kNN-Graph coherence for point
cloud registration [0.4129225533930966]
本稿では,目標点集合の位相構造を保存した残差ニューラルネットワークを用いた点集合登録法を提案する。
提案手法は2次元トイの例を例に紹介し,高次元フローサイトメトリーを用いて実験を行った。
論文 参考訳(メタデータ) (2023-03-31T18:06:26Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Local Intrinsic Dimensionality Measures for Graphs, with Applications to
Graph Embeddings [1.1602089225841632]
NC-LIDは,ノードの自然群集を本質的な地域として,最短経路距離の識別力を定量化するための新しいLID関連尺度である。
ノード2ベックの2つの LID 弾性変種を定式化することにより, LID 対応グラフ埋め込みアルゴリズムを設計する方法について検討した。
実世界の多数のグラフ上でのNC-LIDの実証分析により,ノード中心性測定値よりも優れたノード2vec埋め込みにおいて,高いリンク再構成誤差を持つノードを指し示すことができることを示した。
論文 参考訳(メタデータ) (2022-08-25T10:32:07Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
本稿では、局所的な類似性、接続性、グローバル構造を教師なしで表現するグラフSylvester Embedding (GSE)を紹介する。
GSEはシルヴェスター方程式の解を用いて、ネットワーク構造と近傍の近接を1つの表現で捉える。
論文 参考訳(メタデータ) (2022-05-07T04:11:23Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Anisotropic Graph Convolutional Network for Semi-supervised Learning [7.843067454030999]
グラフ畳み込みネットワークは、高精度な予測結果を達成するのに有用であることが証明された効率的なノード埋め込みを学習する。
これらのネットワークはグラフの過度な平滑化と縮小効果の問題に悩まされており、それはグラフの端に線形ラプラシア流を用いて拡散するからである。
本稿では,ノードからの情報的特徴を捉える非線形関数を導入し,過度なスムーシングを防止し,半教師付きノード分類のための異方性グラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T13:56:03Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Graph matching between bipartite and unipartite networks: to collapse,
or not to collapse, that is the question [13.625395368083641]
一致するグラフの1つが二部ネットワークであり、一方が一部ネットワークであるような共通的な設定に対処する。
本稿では,二部グラフと一部グラフのグラフマッチング問題を,非方向のグラフィカルモデルを用いて定式化する。
両部ネットワークを単部ネットワークに変換するという単純なアプローチよりも,我々の手法がより正確なマッチングを実現する方法を示す。
論文 参考訳(メタデータ) (2020-02-05T05:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。