論文の概要: Bayesian Modelling Approaches for Quantum States -- The Ultimate
Gaussian Process States Handbook
- arxiv url: http://arxiv.org/abs/2308.07669v2
- Date: Wed, 16 Aug 2023 09:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 10:22:59.298032
- Title: Bayesian Modelling Approaches for Quantum States -- The Ultimate
Gaussian Process States Handbook
- Title(参考訳): 量子状態に対するベイズ的モデリングアプローチ - 究極のガウス的プロセス状態ハンドブック
- Authors: Yannic Rath
- Abstract要約: この論文では、量子多体波動関数の(古典的な)モデリングのための新しいツールとテクニックについて論じる。
一般的な機械学習アプローチとの相乗効果を利用して、最も関連する固有の特徴の自動推論を実現する方法について概説する。
結果として得られるモデルは高い解釈可能性を持ち、量子システムの研究に容易に適用可能なツールを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capturing the correlation emerging between constituents of many-body systems
accurately is one of the key challenges for the appropriate description of
various systems whose properties are underpinned by quantum mechanical
fundamentals. This thesis discusses novel tools and techniques for the
(classical) modelling of quantum many-body wavefunctions with the ultimate goal
to introduce a universal framework for finding accurate representations from
which system properties can be extracted efficiently. It is outlined how
synergies with standard machine learning approaches can be exploited to enable
an automated inference of the most relevant intrinsic characteristics through
rigorous Bayesian regression techniques. Based on the probabilistic framework
forming the foundation of the introduced ansatz, coined the Gaussian Process
State, different compression techniques are explored to extract numerically
feasible representations of relevant target states within stochastic schemes.
By following intuitively motivated design principles, the resulting model
carries a high degree of interpretability and offers an easily applicable tool
for the numerical study of quantum systems, including ones which are
notoriously difficult to simulate due to a strong intrinsic correlation. The
practical applicability of the Gaussian Process States framework is
demonstrated within several benchmark applications, in particular, ground state
approximations for prototypical quantum lattice models, Fermi-Hubbard models
and $J_1-J_2$ models, as well as simple ab-initio quantum chemical systems.
- Abstract(参考訳): マルチボディシステムの構成要素間の相関関係を正確に捉えることは、量子力学的基礎に基礎を置いている様々なシステムの適切な記述の鍵となる課題の1つである。
この論文では、量子多体波動関数の(古典的な)モデリングのための新しいツールと技術について論じ、システム特性を効率的に抽出できる正確な表現を見つけるための普遍的な枠組みを導入することを究極の目標としている。
厳密なベイズ回帰手法を用いて、最も関連する本質的特徴の自動推論を可能にするために、標準機械学習アプローチとの相乗効果をどのように活用するかを概説する。
ガウス過程状態(Gaussian Process State)を創始したアンザッツの基盤を形成する確率的枠組みに基づいて,確率的スキーム内の関連する対象状態の数値的に実行可能な表現を抽出する。
直感的に動機づけられた設計原則に従うことにより、結果として得られるモデルは高い解釈可能性を持ち、強い内在的相関によりシミュレーションが難しいことを含む量子系の数値研究に容易に適用可能なツールを提供する。
ガウス過程状態フレームワークの実用的適用性は、特に原型量子格子モデルに対する基底状態近似、フェルミ-Hubbardモデルと$J_1-J_2$モデル、および単純なab-initio量子化学系において証明される。
関連論文リスト
- Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - A framework for efficient ab initio electronic structure with Gaussian
Process States [0.0]
本稿では,現代の機械学習による量子多体状態の表現を用いて,現実的なフェルミオン系の効率的なシミュレーションを行うための枠組みを提案する。
3次元水素中のモット転移の単純化されたモデルを含む、最大64個の電子を持つ系の競合精度を示す。
論文 参考訳(メタデータ) (2023-02-02T13:40:38Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
パラメータ化混合状態に対する量子自然勾配降下の一般化を導入する。
また、堅牢な一階近似アルゴリズム、Quantum-Probabilistic Mirror Descentを提供する。
我々のアプローチは、モデル選択における柔軟性を実現するために、それまでのサンプル効率の手法を拡張しました。
論文 参考訳(メタデータ) (2022-06-09T17:58:15Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
オープン量子系の非マルコフ力学の解析に対するデータ駆動型アプローチを提案する。
提案手法では, 環境の有効次元と, 共同系環境量子力学のスペクトルを計測する。
オープン量子システムの様々なモデルを用いて提案手法の性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T14:27:33Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
オープン量子システムのダイナミクスに対処するためのアプローチを提案する。
自己回帰変換ニューラルネットワークを用いて量子状態をコンパクトに表現する。
効率的なアルゴリズムは、リウヴィリア超作用素の力学をシミュレートするために開発された。
論文 参考訳(メタデータ) (2020-09-11T18:00:00Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
我々は、絡み合った多体量子状態をコンパクトに表現するための、新しい非パラメトリック形式を示す。
この状態は、非常にコンパクトで、体系的に即効性があり、サンプリングに効率的である。
また、量子状態に対する普遍的な近似器として証明されており、データセットのサイズが大きくなるにつれて、絡み合った多体状態も捉えることができる。
論文 参考訳(メタデータ) (2020-02-27T15:54:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。