論文の概要: Approximate non-linear model predictive control with safety-augmented neural networks
- arxiv url: http://arxiv.org/abs/2304.09575v2
- Date: Tue, 08 Oct 2024 15:14:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:25:07.674863
- Title: Approximate non-linear model predictive control with safety-augmented neural networks
- Title(参考訳): 安全強化ニューラルネットワークを用いた近似非線形モデル予測制御
- Authors: Henrik Hose, Johannes Köhler, Melanie N. Zeilinger, Sebastian Trimpe,
- Abstract要約: 本稿では、ニューラルネットワーク(NN)によるモデル予測制御(MPC)制御の近似を行い、高速なオンライン評価を実現する。
我々は,近似不正確性にもかかわらず,収束性や制約満足度を決定論的に保証する安全性向上を提案する。
- 参考スコア(独自算出の注目度): 7.670727843779155
- License:
- Abstract: Model predictive control (MPC) achieves stability and constraint satisfaction for general nonlinear systems, but requires computationally expensive online optimization. This paper studies approximations of such MPC controllers via neural networks (NNs) to achieve fast online evaluation. We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies. We approximate the entire input sequence of the MPC with NNs, which allows us to verify online if it is a feasible solution to the MPC problem. We replace the NN solution by a safe candidate based on standard MPC techniques whenever it is infeasible or has worse cost. Our method requires a single evaluation of the NN and forward integration of the input sequence online, which is fast to compute on resource-constrained systems. The proposed control framework is illustrated using two numerical non-linear MPC benchmarks of different complexity, demonstrating computational speedups that are orders of magnitude higher than online optimization. In the examples, we achieve deterministic safety through the safety-augmented NNs, where a naive NN implementation fails.
- Abstract(参考訳): モデル予測制御(MPC)は、一般的な非線形システムの安定性と制約満足度を達成するが、計算コストのかかるオンライン最適化を必要とする。
本稿では、ニューラルネットワーク(NN)によるMPCコントローラの近似を行い、高速なオンライン評価を実現する。
我々は,近似不正確性にもかかわらず,収束性や制約満足度を決定論的に保証する安全性向上を提案する。
我々は、MPCの入力シーケンス全体をNNで近似し、MPC問題に対する実現可能な解決策であるかどうかをオンラインで検証する。
我々は、NNソリューションを標準のMPC技術に基づく安全な候補に置き換える。
提案手法では,NNの単一評価と入力シーケンスの前方統合が必要であり,資源制約システム上での計算が高速である。
提案する制御フレームワークは,2つの数値非線形MPCベンチマークを用いて,オンライン最適化よりも桁違いの計算スピードアップを示す。
この例では、安全強化されたNNを用いて決定論的安全性を実現し、そこでは素早いNN実装が失敗する。
関連論文リスト
- Efficient model predictive control for nonlinear systems modelled by deep neural networks [6.5268245109828005]
本稿では、非線形性と不確実性が深層ニューラルネットワーク(NN)によってモデル化された動的システムのためのモデル予測制御(MPC)を提案する。
NN出力はシステム状態と制御入力の高次複素非線形性を含むため、MPC問題は非線形であり、リアルタイム制御では解決が難しい。
論文 参考訳(メタデータ) (2024-05-16T18:05:18Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Learning Predictive Safety Filter via Decomposition of Robust Invariant
Set [6.94348936509225]
本稿では, RMPCとRL RLの併用による非線形システムの安全フィルタの合成について述べる。
本稿では,ロバストリーチ問題に対する政策アプローチを提案し,その複雑性を確立する。
論文 参考訳(メタデータ) (2023-11-12T08:11:28Z) - Sub-linear Regret in Adaptive Model Predictive Control [56.705978425244496]
本稿では,STT-MPC (Self-Tuning tube-based Model Predictive Control) について述べる。
システム力学を最初に認識したアルゴリズムと比較して,アルゴリズムの後悔を解析する。
論文 参考訳(メタデータ) (2023-10-07T15:07:10Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
最適合成アルゴリズムは、証明された状態の数を4倍以上に増やすことができることを示す。
このアルゴリズムは、平均的な到達回避確率を3倍以上に向上させることができる。
論文 参考訳(メタデータ) (2023-10-03T10:52:21Z) - Safety Filter Design for Neural Network Systems via Convex Optimization [35.87465363928146]
ニューラルネットワーク(NN)システムの安全性を確保するために,凸最適化に依存する新しい安全フィルタを提案する。
非線形振り子システムにおいて,提案手法の有効性を数値的に示す。
論文 参考訳(メタデータ) (2023-08-16T01:30:13Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Reliably-stabilizing piecewise-affine neural network controllers [5.203329540700177]
モデル予測制御(MPC)ポリシーのニューラルネットワーク(NN)近似に影響を与える一般的な問題は、NNベースのコントローラの動作の下でクローズドループシステムの安定性を評価するための分析ツールがないことである。
本稿では、そのような制御器の性能を定量化したり、与えられたMPCスキームの望ましい特性を保持する最小の複雑性NNを設計するための一般的な手順を提案する。
論文 参考訳(メタデータ) (2021-11-13T20:01:43Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Learning-based Adaptive Control via Contraction Theory [7.918886297003018]
パラメトリック不確実性を有する非線形システムのための新しいディープラーニングに基づく適応制御フレームワーク、Adaptive Neural Contraction Metric (aNCM) を提案する。
aNCMは、不確実性の下でシステムの軌道の安定性と指数有界性を保証する最適適応収縮メトリックのニューラルネットワークモデルを使用する。
論文 参考訳(メタデータ) (2021-03-04T12:19:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。