Passive Measurement of Autonomic Arousal in Real-World Settings
- URL: http://arxiv.org/abs/2504.21242v1
- Date: Wed, 30 Apr 2025 00:45:13 GMT
- Title: Passive Measurement of Autonomic Arousal in Real-World Settings
- Authors: Samy Abdel-Ghaffar, Isaac Galatzer-Levy, Conor Heneghan, Xin Liu, Sarah Kernasovskiy, Brennan Garrett, Andrew Barakat, Daniel McDuff,
- Abstract summary: autonomic nervous system (ANS) is activated during stress.<n>ANS activity can have negative effects on cardiovascular health, sleep, the immune system, and mental health.<n>We present an approach to continuous remote measurement of ANS activation through widely available remote wrist-based sensors.
- Score: 17.490383024379053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The autonomic nervous system (ANS) is activated during stress, which can have negative effects on cardiovascular health, sleep, the immune system, and mental health. While there are ways to quantify ANS activity in laboratories, there is a paucity of methods that have been validated in real-world contexts. We present the Fitbit Body Response Algorithm, an approach to continuous remote measurement of ANS activation through widely available remote wrist-based sensors. The design was validated via two experiments, a Trier Social Stress Test (n = 45) and ecological momentary assessments (EMA) of perceived stress (n=87), providing both controlled and ecologically valid test data. Model performance predicting perceived stress when using all available sensor modalities was consistent with expectations (accuracy=0.85) and outperformed models with access to only a subset of the signals. We discuss and address challenges to sensing that arise in real world settings that do not present in conventional lab environments.
Related papers
- An Adaptive Testing Approach Based on Field Data [6.823497313502428]
This work introduces AdapTA, a novel Self-Adaptive Testing in the Field (SATF) strategy tailored for testing Body Sensor Networks (BSNs)<n>AdapTA employs an ex-vivo approach, using real-world data collected from the field to simulate patient behavior in in-house experiments.
arXiv Detail & Related papers (2025-03-19T10:12:55Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
arXiv Detail & Related papers (2024-01-23T16:49:54Z) - Deep-seeded Clustering for Emotion Recognition from Wearable Physiological Sensors [1.380698851850167]
We propose and test a deep-seeded clustering algorithm that automatically extracts and classifies features from physiological signals with minimal supervision.<n>We show that the model obtains good performance results across three different datasets frequently used in affective computing studies.
arXiv Detail & Related papers (2023-08-17T14:37:35Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.<n>We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.<n>We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Classification of Stress via Ambulatory ECG and GSR Data [0.0]
This work empirically assesses several approaches to detect stress using physiological data recorded in an ambulatory setting with self-reported stress annotations.
The optimal stress detection approach achieves 90.77% classification accuracy, 91.24 F1-submission, 90.42 Sensitivity and 91.08 Specificity.
arXiv Detail & Related papers (2022-07-19T15:57:14Z) - PhysioMTL: Personalizing Physiological Patterns using Optimal Transport
Multi-Task Regression [21.254400561280296]
Heart rate variability (HRV) is a practical and noninvasive measure of autonomic nervous system activity.
We develop Physiological Multitask-Learning (PhysioMTL) by harnessing Optimal Transport theory within a Multitask-learning framework.
arXiv Detail & Related papers (2022-03-19T19:14:25Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.