A Variational Qubit-Efficient MaxCut Heuristic Algorithm
- URL: http://arxiv.org/abs/2308.10383v2
- Date: Thu, 23 Nov 2023 18:49:54 GMT
- Title: A Variational Qubit-Efficient MaxCut Heuristic Algorithm
- Authors: Yovav Tene-Cohen, Tomer Kelman, Ohad Lev, and Adi Makmal
- Abstract summary: We present a new variational Qubit-Efficient MaxCut (QEMC) algorithm that requires a logarithmic number of qubits with respect to the graph size.
We demonstrate cutting-edge performance for graph instances consisting of up to 32 nodes (5 qubits) on real superconducting hardware, and for graphs with up to 2048 nodes (11 qubits) using noiseless simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MaxCut is a key NP-Hard combinatorial optimization graph problem with
extensive theoretical and industrial applications, including the Ising model
and chip design. While quantum computing offers new solutions for such
combinatorial challenges which are potentially better than classical schemes,
with the Quantum Approximate Optimization Algorithm (QAOA) being a
state-of-the-art example, its performance is currently hindered by hardware
noise and limited qubit number. Here, we present a new variational
Qubit-Efficient MaxCut (QEMC) algorithm that requires a logarithmic number of
qubits with respect to the graph size, an exponential reduction compared to
QAOA. We demonstrate cutting-edge performance for graph instances consisting of
up to 32 nodes (5 qubits) on real superconducting hardware, and for graphs with
up to 2048 nodes (11 qubits) using noiseless simulations, outperforming the
established classical algorithm of Goemans and Williamson (GW). The QEMC
algorithm's innovative encoding scheme empowers it with great noise-resiliency
on the one hand, but also enables its efficient classical simulation on the
other, thus obscuring a distinct quantum advantage. Nevertheless, even in the
absence of quantum advantage, the QEMC algorithm serves as a potential
quantum-inspired algorithm, provides a challenging benchmark for QAOA, and
presents a novel encoding paradigm with potential applications extending to
other quantum and classical algorithms.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
Quantum Approximate Optimization (QAOA) stands out for its potential to efficiently solve the Max-Cut problem.
We use Graph Neural Networks (GNN) as a warm-start technique to optimize QAOA, using GNN as a warm-start technique.
Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing.
arXiv Detail & Related papers (2024-03-05T20:23:25Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
We present an approximate gradient-based quantum algorithm for hardware-efficient circuits with amplitude encoding.
We show how simple linear constraints can be directly incorporated into the circuit without additional modification of the objective function with penalty terms.
arXiv Detail & Related papers (2023-05-23T16:17:57Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Classical variational simulation of the Quantum Approximate Optimization
Algorithm [0.0]
We introduce a method to simulate layered quantum circuits consisting of parametrized gates.
A neural-network parametrization of the many-qubit wave function is used.
For the largest circuits simulated, we reach 54 qubits at 4 QAOA layers.
arXiv Detail & Related papers (2020-09-03T15:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.