論文の概要: Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data
- arxiv url: http://arxiv.org/abs/2308.10968v3
- Date: Wed, 19 Feb 2025 16:24:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 15:43:05.311078
- Title: Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data
- Title(参考訳): 限定データを用いたMRIフィールド・トランスファー再構成のためのニューラルスタイル転送による正規化
- Authors: Guoyao Shen, Yancheng Zhu, Mengyu Li, Ryan McNaughton, Hernan Jara, Sean B. Andersson, Chad W. Farris, Stephan Anderson, Xin Zhang,
- Abstract要約: ニューラルスタイルトランスファーによる正規化は、磁場-転送再構成を可能にするために、ニューラルスタイルのトランスファーエンジンをデノイザと統合する新しいフレームワークである。
実験の結果,RNSTは様々な解剖学的面にまたがって高品質な画像を再構成できることを示した。
- 参考スコア(独自算出の注目度): 2.308563547164654
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in MRI reconstruction have demonstrated remarkable success through deep learning-based models. However, most existing methods rely heavily on large-scale, task-specific datasets, making reconstruction in data-limited settings a critical yet underexplored challenge. While regularization by denoising (RED) leverages denoisers as priors for reconstruction, we propose Regularization by Neural Style Transfer (RNST), a novel framework that integrates a neural style transfer (NST) engine with a denoiser to enable magnetic field-transfer reconstruction. RNST generates high-field-quality images from low-field inputs without requiring paired training data, leveraging style priors to address limited-data settings. Our experiment results demonstrate RNST's ability to reconstruct high-quality images across diverse anatomical planes (axial, coronal, sagittal) and noise levels, achieving superior clarity, contrast, and structural fidelity compared to lower-field references. Crucially, RNST maintains robustness even when style and content images lack exact alignment, broadening its applicability in clinical environments where precise reference matches are unavailable. By combining the strengths of NST and denoising, RNST offers a scalable, data-efficient solution for MRI field-transfer reconstruction, demonstrating significant potential for resource-limited settings.
- Abstract(参考訳): 近年のMRI再建は深層学習モデルにより顕著な成功を収めている。
しかし、既存のほとんどのメソッドは、大規模でタスク固有のデータセットに大きく依存しているため、データ制限された設定の再構築は、重要で未調査の課題である。
本稿では, ニューラルスタイル転送(NST)エンジンをデノイザと統合し, 磁界移動再構成を可能にする新しいフレームワークであるRNSTを提案する。
RNSTは、ペア化されたトレーニングデータを必要とせずに、低フィールド入力から高品質な画像を生成し、制限データ設定に対処するためにスタイルの事前を利用する。
実験の結果、RNSTは様々な解剖学的面(軸, 冠, 矢状面)と騒音レベルにまたがる高品質な画像の再構成が可能であり、低磁場基準に比べて明瞭さ、コントラスト、構造的忠実さが優れていることが示された。
RNSTは、スタイルやコンテンツイメージが正確なアライメントを欠いている場合でも堅牢性を維持し、正確な参照マッチが利用できない臨床環境において適用範囲を広げる。
NSTとdenoisingの長所を組み合わせることで、RNSTはMRIフィールド転送再構成のためのスケーラブルでデータ効率のよいソリューションを提供する。
関連論文リスト
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
論文 参考訳(メタデータ) (2025-03-16T12:32:11Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
実世界のMRIは、熱ゆらぎによる固有のノイズを既に含んでいる。
そこで本研究では,Nila-DC (NoIse Level Adaptive Data Consistency) を用いた後方サンプリング手法を提案する。
提案手法は最先端のMRI再構成法を超越し,様々なノイズレベルに対して高い堅牢性を有する。
論文 参考訳(メタデータ) (2024-03-08T12:07:18Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMRは、アンダーサンプルMRI画像スライスからコンディショニング信号を知覚し、対応するフルサンプルMRI画像スライスを生成する。
我々は,MICCAI 2023 Cardiac MRI Restruction Challengeデータセットを用いたDiffCMRとT1/T2マッピングタスクの検証を行った。
その結果,本手法は従来の手法をはるかに上回り,最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2023-12-08T06:11:21Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Inlicit Neuraltruth (INR) は逆問題を解決するための強力なDLベースのツールとして登場した。
本研究では,高度にアンサンプされたk空間データから動的MRI再構成を改善するためのINRに基づく手法を提案する。
提案したINRは、ダイナミックMRI画像を暗黙の関数として表現し、それらをニューラルネットワークにエンコードする。
論文 参考訳(メタデータ) (2022-12-31T05:43:21Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
加速MRIの一般的なアプローチは、k空間データをアンサンプすることである。
アンサンプはスキャン手順を高速化する一方で、画像内のアーティファクトを生成し、アーティファクトのない画像を生成するために高度な再構築アルゴリズムが必要である。
本研究では、新しい進化的ニューラルネットワーク探索アルゴリズムを用いて、最適化されたニューラルネットワークを用いて、アンダーサンプルデータからのMRI再構成を行った。
論文 参考訳(メタデータ) (2022-06-15T03:42:18Z) - Invertible Sharpening Network for MRI Reconstruction Enhancement [17.812760964428165]
InvSharpNet(InvSharpNet)は,MRI再建の視覚的品質を改善するために提案される。
入力データを地上の真実にマッピングする従来の方法とは異なり、InvSharpNetは、ぼやけた変換を学ぶための後方トレーニング戦略を適用している。
さまざまなMRIデータセットの実験では、InvSharpNetはアーティファクトの少ない再構築シャープネスを改善することができる。
論文 参考訳(メタデータ) (2022-06-06T18:21:48Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
Zero-Shot Learned Adrial Transformers (SLATER) を用いた新しい非監視MRI再構成法を提案する。
アンダーサンプルテストデータ上でゼロショット再構成を行い、ネットワークパラメータを最適化して推論を行います。
脳MRIデータセットの実験は、いくつかの最先端の教師なし手法に対してSLATERの優れた性能を明らかに示している。
論文 参考訳(メタデータ) (2021-05-15T02:01:21Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。