Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data
- URL: http://arxiv.org/abs/2308.10968v3
- Date: Wed, 19 Feb 2025 16:24:49 GMT
- Title: Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data
- Authors: Guoyao Shen, Yancheng Zhu, Mengyu Li, Ryan McNaughton, Hernan Jara, Sean B. Andersson, Chad W. Farris, Stephan Anderson, Xin Zhang,
- Abstract summary: Regularization by Neural Style Transfer is a novel framework that integrates a neural style transfer engine with a denoiser to enable magnetic field-transfer reconstruction.<n>Our experiment results demonstrate RNST's ability to reconstruct high-quality images across diverse anatomical planes.
- Score: 2.308563547164654
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in MRI reconstruction have demonstrated remarkable success through deep learning-based models. However, most existing methods rely heavily on large-scale, task-specific datasets, making reconstruction in data-limited settings a critical yet underexplored challenge. While regularization by denoising (RED) leverages denoisers as priors for reconstruction, we propose Regularization by Neural Style Transfer (RNST), a novel framework that integrates a neural style transfer (NST) engine with a denoiser to enable magnetic field-transfer reconstruction. RNST generates high-field-quality images from low-field inputs without requiring paired training data, leveraging style priors to address limited-data settings. Our experiment results demonstrate RNST's ability to reconstruct high-quality images across diverse anatomical planes (axial, coronal, sagittal) and noise levels, achieving superior clarity, contrast, and structural fidelity compared to lower-field references. Crucially, RNST maintains robustness even when style and content images lack exact alignment, broadening its applicability in clinical environments where precise reference matches are unavailable. By combining the strengths of NST and denoising, RNST offers a scalable, data-efficient solution for MRI field-transfer reconstruction, demonstrating significant potential for resource-limited settings.
Related papers
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.
Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.
We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
Real-world MRI acquisitions already contain inherent noise due to thermal fluctuations.
We propose a posterior sampling strategy with a novel NoIse Level Adaptive Data Consistency (Nila-DC) operation.
Our method surpasses the state-of-the-art MRI reconstruction methods, and is highly robust against various noise levels.
arXiv Detail & Related papers (2024-03-08T12:07:18Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMR perceives conditioning signals from the under-sampled MRI image slice and generates its corresponding fully-sampled MRI image slice.
We validate DiffCMR with cine reconstruction and T1/T2 mapping tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge dataset.
Results show that our method achieves state-of-the-art performance, exceeding previous methods by a significant margin.
arXiv Detail & Related papers (2023-12-08T06:11:21Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Implicit Neuraltruth (INR) has appeared as powerful DL-based tool for solving the inverse problem.
In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data.
The proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks.
arXiv Detail & Related papers (2022-12-31T05:43:21Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Invertible Sharpening Network for MRI Reconstruction Enhancement [17.812760964428165]
We propose an invertible sharpening network (InvSharpNet) to improve the visual quality of MRI reconstructions.
Unlike the traditional methods that learn to map the input data to the ground truth, InvSharpNet adapts a backward training strategy that learns a blurring transform.
Experiments on various MRI datasets demonstrate that InvSharpNet can improve reconstruction sharpness with few artifacts.
arXiv Detail & Related papers (2022-06-06T18:21:48Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.