論文の概要: Development of a Novel Quantum Pre-processing Filter to Improve Image
Classification Accuracy of Neural Network Models
- arxiv url: http://arxiv.org/abs/2308.11112v1
- Date: Tue, 22 Aug 2023 01:27:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 19:39:34.320696
- Title: Development of a Novel Quantum Pre-processing Filter to Improve Image
Classification Accuracy of Neural Network Models
- Title(参考訳): ニューラルネットワークモデルの画像分類精度を向上させる新しい量子前処理フィルタの開発
- Authors: Farina Riaz, Shahab Abdulla, Hajime Suzuki, Srinjoy Ganguly, Ravinesh
C. Deo and Susan Hopkins
- Abstract要約: 本稿では,ニューラルネットワーク(NN)モデルの画像分類精度を向上させるために,新しい量子前処理フィルタ(QPF)を提案する。
その結果,MNIST (手書き10桁) とEMNIST (手書き47桁と文字) のデータセットに基づく画像分類精度を向上させることができた。
しかし,43種類の実生活交通標識画像を用いた比較的複雑なGTSRBデータセットに対するQPF手法による検証の結果,分類精度の低下が認められた。
- 参考スコア(独自算出の注目度): 1.2965700352825555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel quantum pre-processing filter (QPF) to improve
the image classification accuracy of neural network (NN) models. A simple four
qubit quantum circuit that uses Y rotation gates for encoding and two
controlled NOT gates for creating correlation among the qubits is applied as a
feature extraction filter prior to passing data into the fully connected NN
architecture. By applying the QPF approach, the results show that the image
classification accuracy based on the MNIST (handwritten 10 digits) and the
EMNIST (handwritten 47 class digits and letters) datasets can be improved, from
92.5% to 95.4% and from 68.9% to 75.9%, respectively. These improvements were
obtained without introducing extra model parameters or optimizations in the
machine learning process. However, tests performed on the developed QPF
approach against a relatively complex GTSRB dataset with 43 distinct class
real-life traffic sign images showed a degradation in the classification
accuracy. Considering this result, further research into the understanding and
the design of a more suitable quantum circuit approach for image classification
neural networks could be explored utilizing the baseline method proposed in
this paper.
- Abstract(参考訳): 本稿では,ニューラルネットワーク(nn)モデルの画像分類精度を向上させる新しい量子前処理フィルタ(qpf)を提案する。
完全に接続されたNNアーキテクチャにデータを渡す前に、Y回転ゲートと2つの制御されたNOTゲートを用いた簡単な4量子ビット量子回路を特徴抽出フィルタとして適用する。
QPFアプローチを適用することで、MNIST(手書き10桁)とEMNIST(手書き47桁と文字)のデータセットに基づく画像分類精度が92.5%から95.4%、68.9%から75.9%に改善できることが示されている。
これらの改善は、機械学習プロセスに追加のモデルパラメータや最適化を導入することなく得られた。
しかし,43種類の実生活交通標識画像を用いた比較的複雑なGTSRBデータセットに対するQPF手法による検証の結果,分類精度の低下が認められた。
この結果を踏まえ、画像分類ニューラルネットワークのためのより適切な量子回路アプローチの理解と設計に関するさらなる研究を、本論文で提案したベースライン手法を用いて検討することができる。
関連論文リスト
- GHN-QAT: Training Graph Hypernetworks to Predict Quantization-Robust
Parameters of Unseen Limited Precision Neural Networks [80.29667394618625]
Graph Hypernetworks(GHN)は、さまざまな未知のCNNアーキテクチャのパラメータを驚くほど高い精度で予測することができる。
予備研究は、8ビットおよび4ビットの量子化CNNの量子化-ロバストパラメータの予測にGHNを使うことを検討した。
4ビットの量子化CNNのGHN予測パラメータの量子化精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-09-24T23:01:00Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Filter Pruning for Efficient CNNs via Knowledge-driven Differential
Filter Sampler [103.97487121678276]
フィルタプルーニングは同時に計算を加速し、CNNのメモリオーバーヘッドを低減する。
本稿では,MFM(Masked Filter Modeling)フレームワークを用いた知識駆動型微分フィルタサンプリング(KDFS)を提案する。
論文 参考訳(メタデータ) (2023-07-01T02:28:41Z) - Efficient Context Integration through Factorized Pyramidal Learning for
Ultra-Lightweight Semantic Segmentation [1.0499611180329804]
本稿では,FPL(Facterized Pyramidal Learning)モジュールを提案する。
空間ピラミッドを2つのステージに分解し,モジュール内での簡易かつ効率的な特徴融合により,悪名高いチェッカーボード効果を解決する。
FPLモジュールとFIRユニットをベースとしたFPLNetと呼ばれる超軽量リアルタイムネットワークを提案する。
論文 参考訳(メタデータ) (2023-02-23T05:34:51Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
ニューラルネットワークの入力データの処理にFSMR(Keypoint frequency selective mesh-to-grid resampling)を提案する。
ネットワークアーキテクチャや分類タスクによって、トレーニング中のFSMRの適用は学習プロセスに役立ちます。
ResNet50とOxflower17データセットの分類精度は最大4.31ポイント向上できる。
論文 参考訳(メタデータ) (2022-09-28T21:34:47Z) - Automatic Machine Learning for Multi-Receiver CNN Technology Classifiers [16.244541005112747]
畳み込みニューラルネットワーク(CNN)は、信号分類のための最も研究されているディープラーニングモデルの1つである。
我々は、複数の同期受信機から収集した生のI/Qサンプルに基づく技術分類に焦点を当てた。
論文 参考訳(メタデータ) (2022-04-28T23:41:38Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
我々は,網膜卵管刺激によるガウスフィルタとランク順符号化の差異を取り入れたスポーキング畳み込みニューラルネットワーク(SCNN)を提示した。
このモデルは、Nengoライブラリーで実装されているように、スパイキングニューロンで動作するように適応されたバックプロパゲーションアルゴリズムの変種を用いて訓練される。
ネットワークは最大90%の精度で達成され、損失はクロスエントロピー関数を用いて計算される。
論文 参考訳(メタデータ) (2021-05-29T15:28:30Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
我々は、計算複雑性を低減し、ニューラルネットワーク処理を高速化する畳み込みニューラルネットワーク変換を考える。
畳み込みニューラルネットワーク(CNN)の使用は、計算的に要求が多すぎるにもかかわらず、画像認識の標準的なアプローチである。
論文 参考訳(メタデータ) (2020-02-18T17:42:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。