論文の概要: Lean classical-quantum hybrid neural network model for image classification
- arxiv url: http://arxiv.org/abs/2412.02059v2
- Date: Mon, 06 Jan 2025 08:38:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:04:13.710192
- Title: Lean classical-quantum hybrid neural network model for image classification
- Title(参考訳): 画像分類のための古典量子ハイブリッドニューラルネットワークモデル
- Authors: Ao Liu, Cuihong Wen, Jieci Wang,
- Abstract要約: 本稿では,変分回路の4層のみを用いて分類性能を実現するLan Classical-Quantum Hybrid Neural Network (LCQHNN)を提案する。
LCQHNNを公開データセット上の画像分類タスクに適用し,99.02%の分類精度を実現する。
- 参考スコア(独自算出の注目度): 12.353900068459446
- License:
- Abstract: The integration of algorithms from quantum information with neural networks has enabled unprecedented advancements in various domains. Nonetheless, the application of quantum machine learning algorithms for image classiffcation predominantly relies on traditional architectures such as variational quantum circuits. The performance of these models is closely tied to the scale of their parameters, with the substantial demand for parameters potentially leading to limitations in computational resources and a signiffcant increase in computation time. In this paper, we introduce a Lean Classical-Quantum Hybrid Neural Network (LCQHNN), which achieves efffcient classiffcation performance with only four layers of variational circuits, thereby substantially reducing computational costs. We apply the LCQHNN to image classiffcation tasks on public datasets and achieve a classiffcation accuracy of 99.02% on the dataset, marking a 5.07% improvement over traditional deep learning methods. Under the same parameter conditions, this method shows a 75% and 70.59% improvement in training convergence speed on two datasets. Furthermore, through visualization studies, it is found that the model effectively captures key data features during training and establishes a clear association between these features and their corresponding categories. This study conffrms that the employment of quantum algorithms enhances the model's ability to handle complex classiffcation problems.
- Abstract(参考訳): 量子情報からニューラルネットワークへのアルゴリズムの統合は、様々な領域において前例のない進歩を可能にしている。
それでも、画像分類への量子機械学習アルゴリズムの適用は、変分量子回路のような従来のアーキテクチャに大きく依存している。
これらのモデルの性能はパラメータのスケールと密接に結びついており、パラメータのかなりの需要は計算資源の制限や計算時間の増加に繋がる可能性がある。
本稿では,変分回路の4層のみによる効率的な分類性能を実現し,計算コストを大幅に削減するLan Classical-Quantum Hybrid Neural Network (LCQHNN)を提案する。
LCQHNNを公開データセット上の画像分類タスクに適用し、データセット上での分類精度99.02%を実現し、従来のディープラーニング手法よりも5.07%向上した。
同じパラメータ条件下では、2つのデータセット上でのトレーニング収束速度は75%と70.59%改善した。
さらに、可視化研究により、学習中に重要なデータの特徴を効果的に捉え、これらの特徴とそれに対応するカテゴリとの明確な関連性を確立することが判明した。
この研究は、量子アルゴリズムの利用により、複雑な分類問題に対処するモデルの能力が向上することを示している。
関連論文リスト
- Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
量子・スパイキングニューラルネットワーク(PPF-QSNN)の並列比例融合(Parallel Proportional Fusion of Quantum and Spiking Neural Networks)と呼ばれる新しいアーキテクチャを導入する。
提案したPPF-QSNNは、既存のスパイクニューラルネットワークと、精度、損失、ロバストネスといったメトリクスにわたるシリアル量子ニューラルネットワークの両方より優れている。
本研究は、人工知能計算における量子優位性の発展と応用の基盤となるものである。
論文 参考訳(メタデータ) (2024-04-01T10:35:35Z) - The role of data embedding in equivariant quantum convolutional neural
networks [2.255961793913651]
等変量子ニューラルネットワーク(EQNN)の性能に及ぼす古典量子埋め込みの影響について検討する。
等価な量子畳み込みニューラルネットワーク(QCNN)から得られた3種類の振幅埋め込みと、EQCNNの分類精度を数値的に比較する。
論文 参考訳(メタデータ) (2023-12-20T18:25:15Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。