Towards Resilient and Sustainable Global Industrial Systems: An Evolutionary-Based Approach
- URL: http://arxiv.org/abs/2503.11688v1
- Date: Wed, 05 Mar 2025 22:10:32 GMT
- Title: Towards Resilient and Sustainable Global Industrial Systems: An Evolutionary-Based Approach
- Authors: Václav Jirkovský, Jiří Kubalík, Petr Kadera, Arnd Schirrmann, Andreas Mitschke, Andreas Zindel,
- Abstract summary: This paper presents a new complex optimization problem in the field of automatic design of industrial systems.<n>It aims at finding solutions that minimize CO2 emissions, transportation time, and costs.<n>The proposed methodology can be applied to any industry case with complex manufacturing and supply chain challenges.
- Score: 0.14660435286994572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a new complex optimization problem in the field of automatic design of advanced industrial systems and proposes a hybrid optimization approach to solve the problem. The problem is multi-objective as it aims at finding solutions that minimize CO2 emissions, transportation time, and costs. The optimization approach combines an evolutionary algorithm and classical mathematical programming to design resilient and sustainable global manufacturing networks. Further, it makes use of the OWL ontology for data consistency and constraint management. The experimental validation demonstrates the effectiveness of the approach in both single and double sourcing scenarios. The proposed methodology, in general, can be applied to any industry case with complex manufacturing and supply chain challenges.
Related papers
- Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management [3.195234044113248]
Supply Chain Management (SCM) faces challenges in adopting advanced optimization techniques due to the "black-box" nature of most AI-based solutions.
We employ an Interpretable Artificial Intelligence (IAI) approach that combines evolutionary computation with Reinforcement Learning (RL) to generate interpretable decision-making policies.
This IAI solution is embedded within a simulation-based optimization framework specifically designed to handle the inherent uncertainties and behaviors of modern supply chains.
arXiv Detail & Related papers (2025-04-16T12:28:35Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization [9.28162057044835]
Optimal trajectory local is computationally expensive for nonlinear and high-dimensional dynamical systems.
In this paper we introduce Diffu-based general model for non-dimensional optima problems.
We also present Diff+, a novel constrained diffusion model with an additional loss in that further reduces the problem violations.
arXiv Detail & Related papers (2024-02-22T03:52:17Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation.
We introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs.
We show that our algorithm provides comparable sublinear regret to the existing works.
arXiv Detail & Related papers (2023-10-10T01:39:04Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - A Logic Programming Approach to Global Logistics in a Co-Design
Environment [0.0]
This paper considers the challenge of creating and optimizing a global logistics system for the construction of a passenger aircraft.
The product in question is an aircraft, comprised of multiple components, manufactured at multiple sites worldwide.
The goal is to find an optimal way to build the aircraft taking into consideration the requirements for its industrial system.
arXiv Detail & Related papers (2023-08-30T09:06:34Z) - Resiliency Analysis of LLM generated models for Industrial Automation [0.7018015405843725]
This paper proposes a study of the resilience and efficiency of automatically generated industrial automation and control systems using Large Language Models (LLMs)
The study aims to provide insights into the effectiveness and reliability of automatically generated systems in industrial automation and control, and to identify potential areas for improvement in their design and implementation.
arXiv Detail & Related papers (2023-08-23T13:35:36Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - Reinforcement Learning for Flexibility Design Problems [77.37213643948108]
We develop a reinforcement learning framework for flexibility design problems.
Empirical results show that the RL-based method consistently finds better solutions than classical methods.
arXiv Detail & Related papers (2021-01-02T02:44:39Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.