論文の概要: Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
- arxiv url: http://arxiv.org/abs/2308.12864v2
- Date: Sat, 17 Aug 2024 15:43:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 04:26:45.160218
- Title: Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
- Title(参考訳): 自己重み付きベイズ物理学インフォームドニューラルネットワークと多タスク逆問題に対するロバスト推定
- Authors: Sarah Perez, Philippe Poncet,
- Abstract要約: 細孔画像における新しいデータ同化戦略を提案する。
これにより、不確実性量子化を取り入れた反応性逆問題に頑健に対処できることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers.
- Abstract(参考訳): 本稿では,多孔質イメージングにおける新しいデータ同化戦略を提案し,不確実性量子化(UQ)を取り入れた反応性逆問題に頑健に対処できることを実証する。
反応流の細孔スケールモデリングは、動的プロセスによるマクロスケール特性の進化を研究する貴重な機会となる。
しかし、X線マイクロトモグラフィー(X線マイクロCT)プロセスによるイメージングの限界に悩まされ、特性推定における相違が引き起こされる。
反応係数は幅広い値をカバーする重要なパラメータであるからである。
我々はこれらの2つの問題を考慮し、ワークフローに不確実な定量化を統合することにより、動的microCT画像に基づく細孔スケールモデリングの信頼性の高いキャリブレーションを確保する。
本手法は, カルサイト溶解におけるデータ駆動法と物理インフォームド法を組み合わせた反応逆問題のマルチタスク定式化に基づく。
これにより、ポロシティ場の形態的不確かさを定量化し、潜在濃度場と動的マイクロCTを持つ所定のPDEモデルを通して反応パラメータの範囲を推定することができる。
データ同化戦略は、連続的に追加のPDE制約を取り入れた逐次強化に依存している。
我々はベイズ物理学情報ニューラルネットワーク(BPINN)の適応重み付けによる堅牢で偏りのない不確実性定量化を保証する。
反応パラメータと無次元数に有意な後続分布を有する合成microCT画像による1D+Timeおよび2D+Time Calcite解離におけるベイズ推論の成功例を示した。
関連論文リスト
- Machine learning-enabled velocity model building with uncertainty quantification [0.41942958779358674]
移動速度モデルの正確な特徴付けは、幅広い物理応用に不可欠である。
従来の速度モデル構築法は強力であるが、逆問題の本質的な複雑さに悩まされることが多い。
本稿では,Diffusion Networkの形で生成モデリングと物理インフォームド・サマリ・統計を統合したスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T01:36:48Z) - Shedding Light on Large Generative Networks: Estimating Epistemic Uncertainty in Diffusion Models [15.352556466952477]
生成拡散モデルは、その大きなパラメータ数(1億を超える)と高次元画像空間での操作で顕著である。
本研究では,拡散モデルに対する疫学的不確実性を推定するための新しいフレームワークであるDiffusion Ensembles for Capturing Uncertainty (DECU)を導入する。
論文 参考訳(メタデータ) (2024-06-05T14:03:21Z) - Dynamical Hyperspectral Unmixing with Variational Recurrent Neural
Networks [25.051918587650636]
MTHU(Multitemporal hyperspectral unmixing)は、ハイパースペクトル画像解析の基本的なツールである。
本稿では,変分リカレントニューラルネットワークに基づく教師なしMTHUアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-19T04:51:34Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Moment evolution equations and moment matching for stochastic image
EPDiff [68.97335984455059]
画像変形モデルにより、画像領域を変形させることにより、時間連続的な画像変換の研究が可能になる。
応用例としては、人口傾向とランダムな被写体特定変異の両方を用いた医療画像分析がある。
パラメータフルモデルにおける統計的推測のための推定器を構築するために、対応する伊藤拡散のモーメント近似を用いる。
論文 参考訳(メタデータ) (2021-10-07T11:08:11Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Kinetics-Informed Neural Networks [0.0]
我々は、通常の微分方程式を解くために、サロゲートモデルを構築するための基礎関数としてフィードフォワード人工ニューラルネットワークを用いる。
正規化多目的最適化設定におけるニューラルネットと運動モデルパラメータの同時学習により,逆問題の解が導かれることを示す。
この逆運動的ODEに対する代理的アプローチは、過渡的なデータに基づく反応機構の解明に役立てることができる。
論文 参考訳(メタデータ) (2020-11-30T00:07:09Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。