論文の概要: A topological model for partial equivariance in deep learning and data
analysis
- arxiv url: http://arxiv.org/abs/2308.13357v1
- Date: Fri, 25 Aug 2023 13:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 14:03:38.187006
- Title: A topological model for partial equivariance in deep learning and data
analysis
- Title(参考訳): 深層学習とデータ解析における部分等分散のトポロジ的モデル
- Authors: Lucia Ferrari, Patrizio Frosini, Nicola Quercioli, Francesca Tombari
- Abstract要約: 我々はP-GENEOsと呼ばれる演算子のクラスを導入し、測定によって表されるデータを非拡張的に変更する。
そのような空間はどのように近似と凸性を持つかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this article, we propose a topological model to encode partial
equivariance in neural networks. To this end, we introduce a class of
operators, called P-GENEOs, that change data expressed by measurements,
respecting the action of certain sets of transformations, in a non-expansive
way. If the set of transformations acting is a group, then we obtain the
so-called GENEOs. We then study the spaces of measurements, whose domains are
subject to the action of certain self-maps, and the space of P-GENEOs between
these spaces. We define pseudo-metrics on them and show some properties of the
resulting spaces. In particular, we show how such spaces have convenient
approximation and convexity properties.
- Abstract(参考訳): 本稿では,ニューラルネットワークの部分的等式を符号化するトポロジモデルを提案する。
この目的のために、ある変換集合の作用に敬意を表して、測定によって表されるデータを変更する、P-GENEOsと呼ばれる演算子のクラスを導入する。
作用する変換の集合が群であれば、いわゆる GENEOs が得られる。
次に、ある自己写像の作用を対象とする測度空間と、それらの空間の間のp-生成の空間について研究する。
それらの上に擬計量を定義し、結果空間のいくつかの性質を示す。
特に、そのような空間が近似や凸性に便利な性質を持つことを示す。
関連論文リスト
- On the Geometry and Optimization of Polynomial Convolutional Networks [2.9816332334719773]
単項活性化機能を持つ畳み込みニューラルネットワークについて検討する。
我々は、モデルの表現力を測定するニューロマニフォールドの次元と度合いを計算する。
一般的な大規模データセットに対して、回帰損失の最適化に起因した臨界点の数を定量化する明示的な公式を導出する。
論文 参考訳(メタデータ) (2024-10-01T14:13:05Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
相対表現はゼロショットモデルの縫合に対する確立されたアプローチである。
相対変換において正規化手順を導入し、非等方的再スケーリングや置換に不変となる。
第二に、クラス内のクラスタリングを促進するトポロジカル正規化損失である、微調整された相対表現におけるトポロジカルデシフィケーションの展開を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:09:22Z) - Basis restricted elastic shape analysis on the space of unregistered
surfaces [10.543359560247847]
本稿では,表面解析のための新しい数学的および数値的枠組みを提案する。
私たちが開発しているアプローチの特異性は、許容変換の空間を変形場の予め定義された有限次元基底に制限することである。
我々は、人体形状やポーズデータ、人間の顔スキャンに対するアプローチを具体的に検証し、形状登録、移動移動、ランダムポーズ生成といった問題に対して、一般的に最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-07T23:06:22Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Oracle-Preserving Latent Flows [58.720142291102135]
我々はラベル付きデータセット全体にわたって複数の非自明な連続対称性を同時に発見するための方法論を開発する。
対称性変換と対応するジェネレータは、特別に構築された損失関数で訓練された完全連結ニューラルネットワークでモデル化される。
この研究における2つの新しい要素は、縮小次元の潜在空間の使用と、高次元のオラクルに関して不変な変換への一般化である。
論文 参考訳(メタデータ) (2023-02-02T00:13:32Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
DID(DID)は、幅広いデータ空間に適用可能なペアワイズな相似性尺度である。
我々は、DIDが理論的研究と実用に関係のある特性を享受していることを証明する。
論文 参考訳(メタデータ) (2022-02-11T13:51:30Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z) - LOCA: LOcal Conformal Autoencoder for standardized data coordinates [6.608924227377152]
多様体の潜在変数に等長な $mathbbRd$ の埋め込みを学ぶ方法を提案する。
我々の埋め込みは, 変形を補正する埋め込みを構成するアルゴリズムであるLOCA (Local Conformal Autoencoder) を用いて得られる。
また、単一サイトWi-FiのローカライゼーションデータにLOCAを適用し、曲面推定を3ドルで行う。
論文 参考訳(メタデータ) (2020-04-15T17:49:37Z) - Inverse Learning of Symmetries [71.62109774068064]
2つの潜在部分空間からなるモデルで対称性変換を学ぶ。
我々のアプローチは、情報ボトルネックと連続的な相互情報正規化器の組み合わせに基づいています。
我々のモデルは, 人工的および分子的データセットにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-02-07T13:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。